Cellulose, hemicellulose, and lignin are three kinds of biopolymer in lignocellulosic biomass, and the utilization of the three biopolymers to synthesize hydrogel adsorbent could protect the environment and enhance the economic value of the biomass. A novel hydrogel adsorbent was prepared using cellulose, lignin, and hemicellulose of wheat straw by a one-pot method, and the adsorbent showed excellent adsorption performance for copper(II) ions. Scanning electron microscopy and Fourier transform infrared spectroscopy analysis showed that the prepared straw-biopolymer-based hydrogel had porous structure, and cellulose fibrils had crosslinked with lignin and hemicellulose by poly(acrylic acid) chains. The effects of contact time, initial concentration, and temperature on the copper(II) ion removal using the prepared hydrogels were investigated, and the obtained results indicated that the adsorption kinetics conformed to the pseudo-second-order and Elovich equation models and the adsorption isotherm was in accord with the Freundlich model. The adsorption thermodynamics study indicated that the adsorption process was spontaneous and accompanied by heat. X-ray photoelectron spectroscopy analysis revealed that the adsorption behavior resulted from ion exchange. The prepared hydrogel based on cellulose, hemicellulose, and lignin could be used for water treatment and soil remediation because of its high performances of excellent heavy metal ion removal and water retention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473214PMC
http://dx.doi.org/10.3390/polym13183063DOI Listing

Publication Analysis

Top Keywords

hydrogel adsorbent
12
cellulose hemicellulose
12
hemicellulose lignin
12
ion removal
12
based cellulose
8
copperii ion
8
lignin hemicellulose
8
spectroscopy analysis
8
indicated adsorption
8
adsorption
6

Similar Publications

The primary goal of the current work was to construct pH-sensitive nano and microcomposite hydrogel beads based on alginate (AL), carboxymethyl cellulose (CMC), biochar (BC), and two Moroccan clays: Ghassoul (swelling SW) and red (not swelling NSW) nano and microhybrid. The adsorbents, SW + AL, SW + AL + BC, SW + AL + CMC, NSW + AL, NSW + AL + BC, NSW + AL + CMC, AL, and AL + CMC were prepared for the adsorption of the antibiotic sulfadiazine (SDZ). The test samples were characterized using a variety of techniques, including X-Ray Diffraction (XRD), IR spectroscopy (FT-IR), and scanning electron microscopy (SEM), with the molecular structures of the studied additives geometrically optimized using the DFT/B3LYP method and the function 6-311G(d).

View Article and Find Full Text PDF

Sodium alginate-crosslinked montmorillonite nanosheets hydrogel for efficient gallium recovery.

Int J Biol Macromol

January 2025

Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, PR China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Luoyang Industrial Technology Institute, Luoyang, Henan 471132, PR China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou, Henan 450001, PR China.

An efficient adsorbent for Ga(III) recovery was developed by applying the geochemical principles of Ga mineralization, using Al-rich clay minerals with a natural affinity for Ga as the raw material. Sodium alginate (SA) facilitated the cross-linked assembly of montmorillonite nanosheets (MMTNS), forming a three-dimensional structured hydrogel. This was achieved through electrostatic interactions between -OH groups on the edges of MMTNS and -COO groups in SA, as well as the complexation of Ca and -COO groups.

View Article and Find Full Text PDF

Hydrogel-Gated MXene-Graphene Field-Effect Transistor for Selective Detection and Screening of SARS-CoV-2 and Bacteria.

ACS Appl Mater Interfaces

January 2025

Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States.

Field-effect transistor (FET) biosensors have significantly attracted interest across various disciplines because of their high sensitivity, time-saving, and label-free characteristics. However, it remains a grand challenge to interface the FET biosensor with complex liquid media. Unlike standard liquid electrolytes containing purified protein content, directly exposing FET biosensors to complex biological fluids introduces significant sensing noise, which is caused by the abundance of nonspecific proteins, viruses, and bacteria that adsorb to the biosensor surfaces.

View Article and Find Full Text PDF

Direct lithium extraction from unconventional resources requires the development of effective adsorbents. Crown ether-containing materials have been reported as promising structures in terms of lithium selectivity, but data on adsorption in real, highly saline brines are scarce. Crown ether-grafted graphene oxides were synthesized using 2-hydroxymethyl-12-crown-4, hydroxy-dibenzo-14-crown-4 and epichlorohydrin as a source of anchoring groups.

View Article and Find Full Text PDF

Chitosan, as a natural and environmentally friendly material, has attracted significant attention in the field of water treatment. In this study, a Chitosan/poly (dimethyl diallyl ammonium chloride-co-acrylamide) composite hydrogel (CPDA hydrogel) featuring a semi-interpenetrating network structure was synthesized via free radical copolymerization for the removal of the anionic dye Congo Red (CR) from wastewater. SEM-EDS, FTIR, XPS, TG, Zeta potential, and mercury intrusion porosimetry (MIP) were employed to analyze the physical and chemical changes in the hydrogel before and after adsorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!