This research aims to determine the mechanical properties of sugar palm fiber ( Wurmb. Merr) (SPF)/glass fiber (GF)-reinforced poly(lactic acid) (PLA) hybrid composites for potential use in motorcycle components. The mechanical (hardness, compressive, impact, and creep) and flammability properties of SPF/GF/PLA hybrid composites were investigated and compared to commercially available motorcycle Acrylonitrile Butadiene Styrene (ABS) plastic components. The composites were initially prepared using a Brabender Plastograph, followed by a compression molding method. This study also illustrated the tensile and flexural stress-strain curves. The results revealed that alkaline-treated SPF/GF/PLA had the highest hardness and impact strength values of 88.6 HRS and 3.10 kJ/m, respectively. According to the results, both alkaline and benzoyl chloride treatments may improve the mechanical properties of SPF/GF/PLA hybrid composites, and a short-term creep test revealed that the alkaline treated SPF/GF/PLA composite displayed the least creep deformation. The findings of the horizontal UL 94 testing indicated that the alkaline-treated SPF/GF/PLA hybrid composites had good flame resistance. However, alkaline-treated SPF/GF/PLA composites are more suitable materials for motorcycle components.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8470235 | PMC |
http://dx.doi.org/10.3390/polym13183061 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!