Impact Toughness of Hybrid Carbon Fiber-PLA/ABS Laminar Composite Produced through Fused Filament Fabrication.

Polymers (Basel)

Industrial Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia.

Published: September 2021

Nowadays, the components of carbon fiber-reinforced polymer composites (an important material) are directly produced with 3D printing technology, especially Fused Filament Fabrication (FFF). However, such components suffer from poor toughness. The main aim of this research is to overcome this drawback by introducing an idea of laying down a high toughness material on the 3D-printed carbon fiber-reinforced polymer composite sheet, thereby making a hybrid composite of laminar structure. To ascertain this idea, in the present study, a carbon-reinforced Polylactic Acid (C-PLA) composite sheet was initially 3D printed through FFF technology, which was then laid upon with the Acrylonitrile Butadiene Styrene (ABS), named as C-PLA/ABS hybrid laminar composite, in an attempt to increase its impact toughness. The hybrid composite was fabricated by varying different 3D printing parameters and was then subjected to impact testing. The results revealed that toughness increased by employing higher layer thickness and clad ratio, while it decreased by increasing the fill density, but remained unaffected due to any change in the raster angle. The highest impact toughness (23,465.6 kJ/m) was achieved when fabrication was performed employing layer thickness of 0.5 mm, clad ratio of 1, fill density of 40%. As a result of laying up ABS sheet on C-PLA sheet, the toughness of resulting structure increased greatly (280 to 365%) as compared to the equivalent C-PLA structure, as expected. Two different types of distinct failures were observed during impact testing. In type A, both laminates fractured simultaneously without any delamination as a hammer hit the sample. In type B, the failure initiated with fracturing of C-PLA sheet followed by interfacial delamination at the boundary walls. The SEM analysis of fractured surfaces revealed two types of pores in the C-PLA lamina, while only one type in the ABS lamina. Further, there was no interlayer cracking in the C-PLA lamina contrary to the ABS lamina, thereby indicating greater interlayer adhesion in the C-PLA lamina.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468235PMC
http://dx.doi.org/10.3390/polym13183057DOI Listing

Publication Analysis

Top Keywords

impact toughness
12
c-pla lamina
12
toughness hybrid
8
laminar composite
8
fused filament
8
filament fabrication
8
carbon fiber-reinforced
8
fiber-reinforced polymer
8
composite sheet
8
hybrid composite
8

Similar Publications

Research efforts are increasingly directed towards the development of biodegradable polymers derived from renewable agricultural resources. Polymer blends, which combine multiple polymers, offer enhanced properties such as ductility and toughness while being more cost-effective compared to the development of specialized copolymers. This study examines nine binary and four ternary blends of polylactic acid (PLA), poly(butylene succinate--adipate) (PBSA), and polyhydroxyalkanoate (PHA).

View Article and Find Full Text PDF

Visible-Light-Fueled Polymerizations for 3D Printing.

Acc Chem Res

January 2025

Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.

ConspectusLight-driven polymerizations and their application in 3D printing have revolutionized manufacturing across diverse sectors, from healthcare to fine arts. Despite the popularized notion that with 3D printing "imagination is the only limit", we and others in the scientific community have identified fundamental hurdles that restrict our capabilities in this space. Herein, we describe the group's efforts in developing photochemical systems that respond to nontraditional colors of light to elicit the rapid, spatiotemporally controlled formation of plastics.

View Article and Find Full Text PDF

Based on the Johnson-Cook constitutive model and modified Coulomb's law, the study investigates the impact of various process parameters on the weld temperature field in high-strength 5052 aluminum alloy friction stir welding (FSW) for aerospace applications. Utilizing a thermo-mechanical model, the significance of rotational speed, welding speed, and indentation on the peak weld temperature is examined through Taguchi's orthogonal experimental design. S/N ratio and ANOVA results show that the rotational speed has the most significant effect on the peak temperature of the weld, followed by the amount of indentation, and the welding speed has the smallest effect, the optimal combination of welding process parameters is determined as follows:the rotational speed is 1000 rpm, the amount of indentation is 0.

View Article and Find Full Text PDF

One of the leading challenges in Water Resource Recovery Facility monitoring and control is the poor data quality and sensor consistency due to the tough and complex circumstances of the process operation. This paper presents a new principal component analysis fault detection approach for the nitrate and nitrite concentration sensor based on Water Resource Recovery Facility measurements, together with the Fisher Discriminant Analysis identification of fault types. Five malfunction cases were considered: constant additive error, ramp changing error in time, incorrect amplification error, random additive error, and unchanging sensor value error.

View Article and Find Full Text PDF

Polymer gels have been widely used in flexible electronics, soft machines and impact protection materials. Conventional gels usually suffer from the inherent conflict between stiffness and toughness, severely hampering their applications. This work proposes a facile yet versatile strategy to break through this trade-off via the synergistic effect of crystal-domain cross-linking and chelation cross-linking, without the need for specific structure design or adding other reinforcements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!