An enormous number of CNN classification algorithms have been proposed in the literature. Nevertheless, in these algorithms, appropriate filter size selection, data preparation, limitations in datasets, and noise have not been taken into consideration. As a consequence, most of the algorithms have failed to make a noticeable improvement in classification accuracy. To address the shortcomings of these algorithms, our paper presents the following contributions: Firstly, after taking the domain knowledge into consideration, the size of the effective receptive field (ERF) is calculated. Calculating the size of the ERF helps us to select a typical filter size which leads to enhancing the classification accuracy of our CNN. Secondly, unnecessary data leads to misleading results and this, in turn, negatively affects classification accuracy. To guarantee the dataset is free from any redundant or irrelevant variables to the target variable, data preparation is applied before implementing the data classification mission. Thirdly, to decrease the errors of training and validation, and avoid the limitation of datasets, data augmentation has been proposed. Fourthly, to simulate the real-world natural influences that can affect image quality, we propose to add an additive white Gaussian noise with σ = 0.5 to the MNIST dataset. As a result, our CNN algorithm achieves state-of-the-art results in handwritten digit recognition, with a recognition accuracy of 99.98%, and 99.40% with 50% noise.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473116PMC
http://dx.doi.org/10.3390/s21186273DOI Listing

Publication Analysis

Top Keywords

classification accuracy
12
handwritten digit
8
filter size
8
data preparation
8
classification
6
data
5
novel handwritten
4
digit classification
4
classification system
4
system based
4

Similar Publications

GradeDiff-IM: An Ensembles Model-based Grade Classification of Breast Cancer.

Biomed Phys Eng Express

January 2025

School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.

View Article and Find Full Text PDF

This paper systematically evaluates saliency methods as explainability tools for convolutional neural networks trained to diagnose glaucoma using simplified eye fundus images that contain only disc and cup outlines. These simplified images, a methodological novelty, were used to relate features highlighted in the saliency maps to the geometrical clues that experts consider in glaucoma diagnosis. Despite their simplicity, these images retained sufficient information for accurate classification, with balanced accuracies ranging from 0.

View Article and Find Full Text PDF

Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.

View Article and Find Full Text PDF

Background: Peri-implantitis is characterized as a pathological change in the tissues around dental implants. Fourier-transform infrared spectroscopy (FTIR) provides molecular information from optical phenomena observed by the vibration of molecules, which is used in biological studies to characterize changes and serves as a form of diagnosis.

Aims: this case-control study evaluated the peri-implant disease by using FTIR spectroscopy with attenuated total reflectance in the fingerprint region.

View Article and Find Full Text PDF

Texture is a significant component used for several applications in content-based image retrieval. Any texture classification method aims to map an anonymously textured input image to one of the existing texture classes. Extensive ranges of methods for labeling image texture were proposed earlier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!