In this paper, we studied the basic characteristics of tilted fiber Bragg gratings (TFBGs), inscribed line-by-line. Experimental results showed that if the TFBGs were located within different planes parallel to the fiber axis, the spectra performed differently. For 2°TFBG, if it was located near the central plane, the Bragg resonance was stronger than ghost mode resonance, and the order reversed if it was located near the boundary between core and cladding. As the tilted angle increased, the range of cladding mode resonance increased. When the tilted angle was larger than 12°, the birefringence effect was observed. Based on the birefringence phenomenon, torsion characteristics were experimentally studied; the sensitivity was about 0.025 dB/degree in the linear variation range. The harmonic order of TFBGs also affected the transmission spectrum. Leaky mode resonance was observed in the 8th order TFBG, and torsion (or polarization) influenced the spectrum of the 8th order TFBG. Our research represented the theory of line-by-line inscribed TFBGs and provided an inscription guidance for TFBGs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469621PMC
http://dx.doi.org/10.3390/s21186237DOI Listing

Publication Analysis

Top Keywords

mode resonance
12
line-by-line inscribed
8
tilted fiber
8
fiber bragg
8
bragg gratings
8
tilted angle
8
8th order
8
order tfbg
8
tfbgs
5
fabrication characterization
4

Similar Publications

Dynamic cycles between brain states during creative storytelling.

Neuroimage

January 2025

State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China. Electronic address:

Many theories suggest that creative thinking involves a dynamic transition between different mental states, yet empirical evidence supporting this notion remains scarce. The dual process model proposes that spontaneous thinking and deliberate thinking drive the dwell in and the transitions between different mental states during creative thinking, but there is a debate over whether the two types of thinking operate in parallel or in sequence. To address these gaps, we conducted a functional magnetic resonance imaging (fMRI) study in 41 college students during a creative storytelling task.

View Article and Find Full Text PDF

Microwave Surface and Lamb Waves in a Thin Diamond Plate: Experimental and Theoretical Investigation.

Ultrasonics

January 2025

Federal State Budgetary Institution , Technological Institute for Superhard and Novel Carbon Materials of National Research Centre, Kurchatov Institute, 108840 Moscow, Troitsk, Russian Federation.

Microwave surface and Lamb waves in a multilayered piezoelectric "Al-IDT/(AlSc)N/(001)[110] diamond" structure designed as a SAW resonator were studied using both the experimental and modeling methods. In this structure, it is possible to generate Rayleigh, surface horizontal (SH) and Lamb waves simultaneously. The successful excitation of Lamb waves at operating frequencies up to 20 GHz has been obtained.

View Article and Find Full Text PDF

The complicated neurological syndrome known as multiple sclerosis (MS) is typified by demyelination, inflammation, and neurodegeneration in the central nervous system (CNS). Managing this crippling illness requires an understanding of the complex interactions between neurophysiological systems, diagnostic techniques, and therapeutic methods. A complex series of processes, including immunological dysregulation, inflammation, and neurodegeneration, are involved in the pathogenesis of MS.

View Article and Find Full Text PDF

In this paper, a new sensor structure is designed, which consists of a metal-insulator-metal (MIM) waveguide and a circular protrusion and a rectangular triangular cavity (CPRTC). The characterization of nanoscale sensors is considered using an approximate numerical method (finite element method). The simulation results show that the sharp asymmetric resonance generated by the interaction between the discrete narrow-band mode and the continuous wideband mode is called Fano resonance.

View Article and Find Full Text PDF

A Reading Range- and Frequency-Reconfigurable Antenna for Near-Field and Far-Field UHF RFID Applications.

Sensors (Basel)

January 2025

Department of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK.

In radio frequency identification (RFID), differences in spectrum policies and tag misreading in different countries are the two main issues that limit its application. To solve these problems, this article proposes a composite right/left-handed transmission line (CRLH-TL)-based reconfigurable antenna for ultra-high frequency near-field and far-field RFID reader applications. The CRLH-TL is achieved using a periodically capacitive gap-loaded parallel plate line.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!