Increasing volatilities within power transmission and distribution force power grid operators to amplify their use of communication infrastructure to monitor and control their grid. The resulting increase in communication creates a larger attack surface for malicious actors. Indeed, cyber attacks on power grids have already succeeded in causing temporary, large-scale blackouts in the recent past. In this paper, we analyze the communication infrastructure of power grids to derive resulting fundamental challenges of power grids with respect to cybersecurity. Based on these challenges, we identify a broad set of resulting attack vectors and attack scenarios that threaten the security of power grids. To address these challenges, we propose to rely on a defense-in-depth strategy, which encompasses measures for (i) device and application security, (ii) network security, and (iii) physical security, as well as (iv) policies, procedures, and awareness. For each of these categories, we distill and discuss a comprehensive set of state-of-the art approaches, as well as identify further opportunities to strengthen cybersecurity in interconnected power grids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473297 | PMC |
http://dx.doi.org/10.3390/s21186225 | DOI Listing |
PLoS One
January 2025
Department of Electrical Engineering, College of Engineering, Taif University, Taif, Saudi Arabia.
Modernizing power systems into smart grids has introduced numerous benefits, including enhanced efficiency, reliability, and integration of renewable energy sources. However, this advancement has also increased vulnerability to cyber threats, particularly False Data Injection Attacks (FDIAs). Traditional Intrusion Detection Systems (IDS) often fall short in identifying sophisticated FDIAs due to their reliance on predefined rules and signatures.
View Article and Find Full Text PDFNeural Netw
January 2025
School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430070, Hubei, China.
In the Imbalanced Multivariate Time Series Classification (ImMTSC) task, minority-class instances typically correspond to critical events, such as system faults in power grids or abnormal health occurrences in medical monitoring. Despite being rare and random, these events are highly significant. The dynamic spatial-temporal relationships between minority-class instances and other instances make them more prone to interference from neighboring instances during classification.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Hubei Key Laboratory of Power Equipment & System Security for Integrated Energy, School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China.
High-voltage (HV) cables are increasingly used in urban power grids, and their safe operation is critical to grid stability. Previous studies have analyzed various defects, including the open circuit in the sheath loop, the flooding in the cross-bonded link box, and the sheath grounding fault. However, there is a paucity of research on the defect of the reverse direction between the inner core and the outer shield of the coaxial cable.
View Article and Find Full Text PDFSci Rep
January 2025
The State Key Laboratory of Collaborative Innovation Center for Smart Grid Fault Detection, Protection and Control Jointly, Kunming University of Science and Technology, Kunming, 650500, China.
Lightning represents the primary threat to power grids, with approximately 80% of natural occurrences being multi-lightning strikes, which have been extensively studied and confirmed to pose even more severe hazards. Hybrid DC circuit breakers (DCCBs) exhibit promising application prospects due to their superior interruption performance. During multi-lightning strikes, lightning intrusive waves pose a greater threat to the insulation of equipment such as hybrid DC fuses, fast mechanical switches, and insulated gate bipolar transistors.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences(CAS), Suzhou, 215123, P. R. China.
The conductivity of AgNWs electrodes can be enhanced by incorporating Ag grids, thereby facilitating the development of large-area flexible organic solar cells (FOSCs). Ag grids from vacuum evaporation offer the advantages of simple film formation, adjustable thickness, and unique structure. However, the complex 3D multi-component structure of AgNWs electrodes will exacerbate the aggregation of large Ag particles, causing the device short circuits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!