Synthesis of Biologically Relevant 1,2,3- and 1,3,4-Triazoles: From Classical Pathway to Green Chemistry.

Molecules

CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France.

Published: September 2021

Green Chemistry has become in the last two decades an increasing part of research interest. Nonconventional «green» sources for chemical reactions include micro-wave, mechanical mixing, visible light and ultrasound. 1,2,3-triazoles have important applications in pharmaceutical chemistry while their 1,2,4 counterparts are developed to a lesser extent. In the review presented here we will focus on synthesis of 1,2,3 and 1,2,4-triazole systems by means of classical and « green chemistry » conditions involving ultrasound chemistry and mechanochemistry. The focus will be on compounds/scaffolds that possess biological/pharmacophoric properties. Finally, we will also present the formal cycloreversion of 1,2,3-triazole compounds under mechanical forces and its potential use in biological systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8464795PMC
http://dx.doi.org/10.3390/molecules26185667DOI Listing

Publication Analysis

Top Keywords

green chemistry
12
chemistry
5
synthesis biologically
4
biologically relevant
4
relevant 123-
4
123- 134-triazoles
4
134-triazoles classical
4
classical pathway
4
pathway green
4
chemistry green
4

Similar Publications

Remdesivir and moxifloxacin hydrochloride are among the most frequently co-administered drugs used for COVID-19 treatment. The current work aims to evaluate green spectrophotometric methodologies for estimating remdesivir and moxifloxacin hydrochloride in different matrices for the first time. The proposed approaches were absorbance subtraction, extended ratio subtraction and amplitude modulation methods.

View Article and Find Full Text PDF

Myceliophthora thermophila as promising fungal cell factories for industrial bioproduction: From rational design to industrial applications.

Bioresour Technol

January 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China. Electronic address:

Myceliophthora thermophila stands out as a prominent fungal cell factory, garnering growing interest due to its distinctive traits advantageous. Currently, M. thermophila has been developed as an efficient cell factory, producing a variety of products from various raw materials.

View Article and Find Full Text PDF

There is a need for advanced developments to battle aggressive breast cancer variations and to address treatment resistance. In cancer therapy, ZnO nanoparticles (NPs) possess the ability to selectively and effectively induce apoptosis in cancer cells. There is an urgent necessity to create novel anti-cancer therapies, and recent studies indicate that ZnO nanoparticles have significant promise.

View Article and Find Full Text PDF

Innovative applications of cobalt tungstate nanoparticles (CoWO NPs) are directly linked to their increased production and consumption, which can consequently increase their release into aquatic ecosystems and the exposure of organisms. Microalgae are autotrophic organisms that contribute directly to global primary productivity and provide oxygen for maintaining many organisms on Earth. In this paper, we assessed the toxicity of CoWO NPs when in contact with the freshwater microalga Raphidocelis subcapitata (Chlorophyceae).

View Article and Find Full Text PDF

Nanocarrier-based dry powders for lung disease treatment are crucial, with in vitro and in silico research being pivotal to their success. This study introduces a method for creating Tiotropium-bromide liposomal inhalation dry powder, termed "Trojan-particles," utilizing thin-film hydration and spray-drying with lactose-arginine carriers. Encapsulating tiotropium-bromide in nanoliposomes enhances lung treatment via liposomes' unique features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!