Rutin has been well recognized for possessing numerous pharmacological and biological activities in several human cancer cells. This research has addressed the inhibitory potential of rutin against the oncogene in SiHa cancer cells, which is known to inactivate various tumor suppressor proteins including and . Further, the inhibitory efficacy of rutin via expression modulation in cervical cancer has not been yet elucidated. Hence, we hypothesized that rutin could exhibit strong inhibitory efficacy against and, thereby, induce significant growth arrest in SiHa cancer cells in a dose-dependent manner. In our study, the cytotoxic efficacy of rutin on the proliferation of a cervical cancer cell line (SiHa) was exhibited using MTT and LDH assays. The correlation between rutin and mRNA expression was assessed by RT-PCR analysis and the associated events (a mechanism) with this downregulation were then explored via performing ROS assay, DAPI analysis, and expression analysis of apoptosis-associated signaling molecules such as , , and and -9 using qRT-PCR analysis. Results exhibit that rutin produces anticancer effects via inducing modulation in the expression of oncogenes as well as tumor suppressor genes. Further apoptosis induction, caspase activation, and ROS generation in rutin-treated SiHa cancer cells explain the cascade of events associated with downregulation in SiHa cancer cells. Additionally, apoptosis induction was further confirmed by the FITC-Annexin V/PI double staining method. Altogether, our research supports the feasibility of developing rutin as one of the potent drug candidates in cervical cancer management via targeting one such crucial oncogene associated with cervical cancer progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472561PMC
http://dx.doi.org/10.3390/molecules26185529DOI Listing

Publication Analysis

Top Keywords

cancer cells
24
cervical cancer
20
siha cancer
16
cancer
10
rutin
9
potential rutin
8
tumor suppressor
8
inhibitory efficacy
8
efficacy rutin
8
apoptosis induction
8

Similar Publications

Confined cell migration along extracellular matrix space in vivo.

Proc Natl Acad Sci U S A

January 2025

Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.

Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.

View Article and Find Full Text PDF

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

Computational-aided rational mutation design of pertuzumab to overcome active HER2 mutation S310F through antibody-drug conjugates.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Precision Medicine and Biopharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Recurrent missense mutations in the human epidermal growth factor receptor 2 (HER2) have been identified across various human cancers. Among these mutations, the active S310F mutation in the HER2 extracellular domain stands out as not only oncogenic but also confers resistance to pertuzumab, an antibody drug widely used in clinical cancer therapy, by impeding its binding. In this study, we have successfully employed computational-aided rational design to undertake directed evolution of pertuzumab, resulting in the creation of an evolved pertuzumab variant named Ptz-SA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!