Apple vinegar is a natural product widely used in food and traditional medicine as it contains many bioactive compounds. The apple variety and production methods are two factors that play a major role in determining the quality of vinegar. Therefore, this study aims to determine the quality of apple vinegar samples from different varieties (Red Delicious, Gala, Golden Delicious, and Starking Delicious) prepared by three methods using small apple pieces, apple juice, and crushed apple, through determining the physicochemical properties and antibacterial activity of these samples. The antibacterial activity was studied against five pathogenic bacteria: , , (ATB: 57), (ATB: 97), and using two methods, disk diffusion and microdilution, for determining the minimum inhibitory concentrations and the minimum bactericidal concentrations. The results of this study showed that the lowest pH value was 3.6 for Stark Delicious, obtained by liquid fermentation, and the highest acetic acid values were 4.7 and 4% for the vinegar of Red Delicious and Golden Delicious, prepared by solid fermentation, respectively. The results of the antibacterial activity showed considerable activity of apple vinegar on the tested strains. Generally, the strain appears less sensitive and seems to be very sensitive against all samples, while the other strains have distinct sensitivities depending on the variety studied and the method used. A higher antibacterial activity was found in vinegar obtained by the apple pieces method and the Red Delicious variety, with a low MIC and MBC recorded, at 1.95 and 3.90 µL/mL, respectively. This study has shown that the choice of both apple variety and production method is therefore an essential step in determining and aiming for the desired quality of apple vinegar.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471607 | PMC |
http://dx.doi.org/10.3390/molecules26185437 | DOI Listing |
Chem Biodivers
January 2025
Gannan Medical University, Depatment of Medicinal Chemistry, Gannan Medical University, 341000, Ganzhou, CHINA.
Extracting natural active ingredients from plants is an effective way to develop and screen modern drugs. Psoralea corylifolia is a leguminous plant whose seeds have long been used as a Traditional Chinese Medicine to treat psoriasis, rheumatism, dermatitis, and other diseases. To date, several main compounds, including coumarins, flavonoids, monoterpene phenols, and benzofurans, have been identified from the seeds of Psoralea corylifolia.
View Article and Find Full Text PDFAMB Express
January 2025
Department of Agriculture Economics, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt.
The urgent need to address the growing problem of antimicrobial resistance in multidrug-resistant bacteria requires the development of pioneering approaches to treatment. The present study aims to evaluate the antimicrobial potential of the essential oils (EOs) of Moringa oleifera (moringa), Cinnamomum verum (cinnamon), and Nigella sativa (black seed) and the synergistic effect of the mixture of these oils against Staphylococcus aureus MCC 1351. Statistical modeling revealed cinnamon oil had the highest individual antimicrobial potency, followed by black seed oil.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
Simple and sustainable three- and four-step sequences of di-OH-protection/mono-OMe-deprotection/OrgRC and di-OH-protection/mono-OMe-deprotection/OrgRC/OMe-deprotection protocols were developed to construct biologically active natural products of irisoquin, irisoquin A, irisoquin D, irisoquin F, sorgoleone-364, embelin, rapanone, 5--methylembelin, 5--methylrapanone and their analogues from the commercially available 2,5-dihydroxy-1,4-benzoquinone, aliphatic aldehydes and Hantzsch ester (1,4-DHP) in very good to excellent yields by using organocatalytic reductive coupling (OrgRC) as key reaction. Many of these natural compounds exhibited a broad spectrum of biological activities including antioxidant, anti-inflammatory, anticonvulsant, anxiolytic, analgesic, anthelmintic, antitumor, antibacterial, and antifertility properties. At the same time, simple and readily available 2,5-dihydroxy-1,4-benzoquinone was transformed into a functionally rich library of 2,5-dihydroxy-3,6-dialkyl-1,4-benzoquinones in very good yields by using sequential OrgRC followed by deprotection reactions and resulting natural/unnatural products would be excellent targets for investigation to show their biological activities compared to known natural products.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa.
C-terminal amidation of antimicrobial peptides (AMPs) is a frequent minor modification used to improve antibacterial potency, commonly ascribed to increased positive charge, protection from proteases, and a stabilized secondary structure. Although the activity of AMPs is primarily associated with the ability to penetrate bacterial membranes, hitherto the effect of amidation on this interaction has not been understood in detail. Here, we show that amidation of the scorpion-derived membranolytic peptide AamAP1-Lys produces a potent analog with faster bactericidal activity, increased membrane permeabilization, and greater Gram-negative membrane penetration associated with greater conformational flexibility.
View Article and Find Full Text PDFNano Lett
January 2025
Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.
The crystalline phase of metal oxides is a key determinant of the properties and functions of the nanomaterials. Traditional approaches have focused on replicating bulk-phase structures, with limited exploration of phase diversity due to challenges in controlling the crystal morphology. Here, we introduce a nanoclay-mediated strategy for crystal-phase engineering, using talc to modulate the morphology and phase of manganese oxide (MnOx) nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!