Tyrosinase is generally known as a melanin-forming enzyme, facilitating monooxygenation of phenols, oxidation of catechols into quinones, and finally generating biological melanin. As a homologous form of tyrosinase in plants, plant polyphenol oxidases perform the same oxidation reactions specifically toward plant polyphenols. Recent studies reported synthetic strategies for large scale preparation of hydroxylated plant polyphenols, using bacterial tyrosinases rather than plant polyphenol oxidase or other monooxygenases, by leveraging its robust monophenolase activity and broad substrate specificity. Herein, we report a novel synthesis of functional plant polyphenols, especially quercetin and myricetin from kaempferol, using screened bacterial tyrosinases. The critical bottleneck of the biocatalysis was identified as instability of the catechol and gallol under neutral and basic conditions. To overcome such instability of the products, the tyrosinase reaction proceeded under acidic conditions. Under mild acidic conditions supplemented with reducing agents, a bacterial tyrosinase from (Ty) displayed efficient consecutive two-step monophenolase activities producing quercetin and myricetin from kaempferol. Furthermore, the broad substrate specificity of Ty toward diverse polyphenols enabled us to achieve the first biosynthesis of tricetin and 3'-hydroxyeriodictyol from apigenin and naringenin, respectively. These results suggest that microbial tyrosinase is a useful biocatalyst to prepare plant polyphenolic catechols and gallols with high productivity, which were hardly achieved by using other monooxygenases such as cytochrome P450s.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466947 | PMC |
http://dx.doi.org/10.3390/microorganisms9091866 | DOI Listing |
Int J Biol Macromol
January 2025
State Key Laboratory of Tea Plant Biology and Utilization, Joint Research Center for Food Nutrition and Health of IHM and Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Anhui Agricultural University, Hefei 230036, PR China; College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, PR China. Electronic address:
To mitigate the risk associated with water-soluble fluoride in tea and to have less influence on the contents of tea infusion, a highly selective lanthanum modified silk fibroin (SF) and polyvinyl alcohol (PVA) composite film (SF/PVA-La) was prepared to remove fluoride from brick tea infusion. Notably, SF/PVA-La could remove about 48 % of the fluoride from in brick tea infusion within 30 min. Importantly, the reduction in total tea polyphenols in brick tea did not exceed 10 %, and the reduction in caffeine was only 0.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Department of Nanotechnology, Institute of Science, Dicle University, 21280, Diyarbakir, Turkey. Electronic address:
Pistacia khinjuk, a dioecious plant native to Southeast Anatolia, Turkey, features distinct male and female individuals with varying bioactive compound profiles. This study investigates the gender-specific phytochemical composition of root extracts from male and female Pistacia khinjuk plants and their influence on the green synthesis of silver nanoparticles. Using natural bioactive compounds such as polyphenols, flavonoids, alkaloids, and terpenoids as reducing and stabilizing agents, the study demonstrates significant differences between the nanoparticles synthesized from male and female root extracts.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Ibadan, Ibadan, Oyo, Nigeria.
Background: The brain is a potential target for aluminium toxicity as it induces oxidative stress, strategies, rich in polyphenolic compound, containing flavonoid and possessing antioxidant property, found in natural plant products, to attenuate aluminium-induced impairments could provide a potential therapeutic intervention and protection for aluminium neurotoxicity.
Method: Forty adult rats weighing between 160 - 165g was used. The rats were divided into four groups (n = 10).
Sci Rep
January 2025
Department of Landscape Architecture, Poznań University of Life Sciences, 159 Dąbrowskiego Street, Poznań, 60-594, Poland.
As a result of human activities, surface waters worldwide are experiencing increasing levels of eutrophication, leading to more frequent occurrences of microalgae, including harmful algal blooms. We aimed to investigate the impact of decomposing camelina straw on mixed phytoplankton communities from eutrophic water bodies, comparing it to the effects of barley straw. The research was carried out in 15 aquaria (five of each type - containing no straw, camelina straw, and barley straw).
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China.
Soy proteins have good nutritional quality and exhibit a range of useful functional attributes, making them a viable option for replacing animal proteins in the development of more sustainable and eco-friendly plant-based food products. Nevertheless, soy proteins are prone to denaturation and/or aggregation under conditions they encounter in some food and beverage products (including certain pH, ionic, and thermal conditions), which adversely impact their functional performance. This problem can often be overcome by covalently (conjugation) or noncovalently (complexation) linking the soy proteins to polysaccharides or polyphenols, thereby expanding their application scope.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!