has been recently recognized as an emerging nosocomial pathogen. There are concerns over the increasing virulence potential of this commensal due to the capabilities of transferring mobile genetic elements to through staphylococcal chromosomal cassette (SCC) and the closely related arginine catabolic mobile element (ACME) and the copper and mercury resistance island (COMER). The potential pathogenicity of , particularly from blood stream infections, has been poorly investigated. In this study, 24 isolated from blood stream infections from Oman were investigated using whole genome sequence analysis. Core genome phylogenetic trees revealed one third of the isolates belong to the multidrug resistance ST-2. Genomic analysis unraveled a common occurrence of SCC type IV and ACME element predominantly type I arranged in a composite island. The genetic composition of ACME was highly variable among isolates of same or different STs. The COMER-like island was absent in all of our isolates. Reduced copper susceptibility was observed among isolates of ST-2 and ACME type I, followed by ACME type V. In conclusion, in this work, we identify a prevalent occurrence of highly variable ACME elements in different hospital STs of in Oman, thus strongly suggesting the hypothesis that ACME types evolved from closely related STs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466944 | PMC |
http://dx.doi.org/10.3390/microorganisms9091824 | DOI Listing |
IJID Reg
March 2025
Laboratory of Respiratory Viruses, Exanthematous and Enteroviruses and Viral Emergencies, Oswaldo Cruz Institute, Rio de Janeiro, Brazil.
Unlabelled: The SARS-CoV-2 JN.1 lineage emerged in late 2023 and quickly replaced the XBB lineages, becoming the predominant Omicron variant worldwide in 2024. We estimate the epidemiologic impact of this SARS-CoV-2 lineage replacement in Brazil and we further assessed the cross-reactive neutralizing antibody (NAb) responses in a cohort of convalescent Brazilian patients infected during 2023.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia.
Current dissociation methods for solid tissues in scRNA-seq studies do not guarantee intact single-cell isolation, especially for sensitive and complex human endocrine tissues. Most studies rely on enzymatic dissociation of fresh samples or nuclei isolation from frozen samples. Dissociating whole intact cells from fresh-frozen samples, commonly collected by biobanks, remains a challenge.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Environmental Biotechnologies, Institute of Microbiology (IM) DACD Campus Mendrisio, University of Applied Sciences and Arts of Southern Switzerland SUPSI, Via Flora Ruchat-Roncati, 6850, Mendrisio, Switzerland.
This study explores the use of conductive material in scaling up anaerobic digestion for enhanced biogas production. Focusing on Direct Interspecies Electron Transfer (DIET), the research employs a syntrophic DIET-able consortium formed by Shewanella oneidensis and Methanosarcina barkerii in 3.8-L experiments utilizing reticulated vitreous carbon (RVC) as conductive material.
View Article and Find Full Text PDFNutrients
December 2024
Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
Objectives: Cancer-related fatigue (CRF) is highly prevalent in patients with breast cancer, resulting in undesirable outcomes and even reduced survival rates. This cross-sectional study investigated the relationship between dietary quality and CRF in patients with breast cancer, and the potential role of gut microbiota (GM) in this association.
Methods: Dietary intake and CRF were evaluated in 342 patients, with 64 fecal samples collected for 16sRNA sequencing and 106 plasma samples for tryptophan (TRP) metabolite determination.
Mikrobiyol Bul
October 2024
Pamukkale University Faculty of Medicine, Department of Medical Microbiology, Denizli, Türkiye.
The aim of this study was to investigate the frequency of sasX, arginine catabolic mobile element (ACME) genes, biofilm formation and some biofilm related virulence factor genes in causative and contaminant coagulase negative staphylococci (CNS) strains isolated from blood cultures. Of the 150 CNS strains included in the study, 50 were grouped as infectious agents and 100 as contaminants. Biofilm formation of the strains was investigated by microplate method and the presence of sasX, ACME, mecA and biofilm associated virulence factor genes icaA, icaD, aap, bhp and IS256 were investigated by inhouse polymerase chain reaction method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!