A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Selective Laser Melting of Hydroxyapatite: Perspectives for 3D Printing of Bioresorbable Ceramic Implants. | LitMetric

Hydroxyapatite, being the major mineral component of tooth enamel and natural bones, is a good candidate for bone tissue engineering applications. One of the promising approaches for manufacturing of three-dimensional objects is selective laser sintering/melting which enables the creation of a dense structure directly during 3D printing by adding material layer-by-layer. The effect of laser irradiation with a wavelength of 10.6 μm on the behavior of mechanochemically synthesized hydroxyapatite under different treatment conditions was studied for the first time in this work. It was shown that, in contrast to laser treatment, the congruent melting is impossible under conditions of a relatively slow rate of heating in a furnace. Depending on the mode of laser treatment, hydroxyapatite can be sintered or melted, or partially decomposed into the more resorbable calcium phosphates. It was found that the congruent selective laser melting of hydroxyapatite can be achieved by treating the dense powder layer with a 0.2 mm laser spot at a power of 4 W and at a scanning speed of 700 mm/s. Melting was shown to be accompanied by the crystallization of a dense monolayer of oxyhydroxyapatite while preserving the initial apatite crystal lattice. The thickness of the melted layer, the presence of micron-sized pores, and the phase composition can be controlled by varying the scanning speed and laser power. This set of parameters permits the use of selective laser melting technology for the production of oxyhydroxyapatite biodegradable implants with acceptable properties by 3D printing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468468PMC
http://dx.doi.org/10.3390/ma14185425DOI Listing

Publication Analysis

Top Keywords

selective laser
16
laser melting
12
melting hydroxyapatite
8
laser
8
laser treatment
8
scanning speed
8
melting
5
hydroxyapatite
5
selective
4
hydroxyapatite perspectives
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!