Effect of Amorphous Metallic Fibers on Strength and Drying Shrinkage of Mortars with Steel Slag Aggregate.

Materials (Basel)

Department of Architectural Engineering, Wonkwang University, 460 Iksan-daero, Iksan 54538, Korea.

Published: September 2021

Recently, with increasingly stringent environmental regulations and the depletion of natural aggregate resources, high-quality aggregates have become scarce. Therefore, significant efforts have been devoted by the construction industry to improve the quality of concrete and achieve sustainable development by utilizing industrial by-products and developing alternative aggregates. In this study, we use amorphous metallic fibers (AMFs) to enhance the performance of mortar with steel slag aggregate. Testing revealed that the 28-day compressive strength of the sample with steel slag aggregate and AMFs was in the range of 48.7-50.8 MPa, which was equivalent to or higher than that of the control sample (48.7 MPa). The AMFs had a remarkable effect on improving the tensile strength of the mortar regardless of the use of natural aggregates. With AMFs, the drying shrinkage reduction rate of the sample with 100% steel slag aggregate was relatively higher than that of the sample with 50% natural fine aggregate. Furthermore, the difference in the drying shrinkage with respect to the amount of AMFs was insignificant. The findings can contribute to sustainable development in the construction industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469965PMC
http://dx.doi.org/10.3390/ma14185403DOI Listing

Publication Analysis

Top Keywords

steel slag
16
slag aggregate
16
drying shrinkage
12
amorphous metallic
8
metallic fibers
8
construction industry
8
sustainable development
8
aggregate
6
amfs
5
fibers strength
4

Similar Publications

Soil reinforcement is one of the techniques used to enhance the engineer characteristics of the soil. Various techniques can be employed to stabilise problematic soils, such as soft clay. These include the utilisation of portland cement, lime, fly ash, ground freezing, jet grouting, prefabricated vertical drains, and thermal approaches.

View Article and Find Full Text PDF

Enhancing road performance and sustainability: A study on recycled porous warm mix asphalt.

Sci Total Environ

January 2025

Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via U. Terracini 28, 40131 Bologna, BO, Italy.

The growing demand for sustainable infrastructure has increased interest in eco-friendly design solutions such as porous asphalt (PA) pavements, which manage stormwater runoff and mitigate urban heat islands, and warm mix asphalt (WMA), which reduces energy consumption and emissions during production. This study evaluates the mechanical and environmental performance of four warm mix porous asphalt (WPA) mixtures incorporating recycled materials and by-products: reclaimed asphalt pavement (RAP), aramid pulp fibres, and electric arc furnace (EAF) steel slag. A Life Cycle Assessment (LCA) with a cradle-to-cradle approach was conducted to comprehensively assess environmental impacts.

View Article and Find Full Text PDF

The Use of Microwave Treatment as a Sustainable Technology for the Drying of Metallurgical Sludge.

Materials (Basel)

December 2024

Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland.

The modern metallurgical industry produces approximately 90% of the volume of all produced steel; for this, integrated technology based on fossil materials such as coal, fluxes, and especially iron ore is used. This industry generates large amounts of waste and by-products at almost all stages of production. Alternative iron and steel production technologies based on iron ore, methane, or pure hydrogen are also not waste-free.

View Article and Find Full Text PDF

Hydration and carbonation curing of high ferrite clinker (FePC) synthesized using EAF slag.

Low Carbon Mater Green Constr

December 2024

Faculty of Technology, Fiber and Particle Engineering Research Unit, University of Oulu, PO Box 4300, 90014 Oulu, Finland.

Unlabelled: This study explores the use of Electric Arc Furnace (EAF) slag as a sustainable alternative raw material in cement clinker production. The research demonstrates the synthesis of ferrite-rich clinker using EAF slag, achieving a clinker composition of 47% alite, 32% ferrite, and 20% belite while replacing 20% of clinker raw materials i.e.

View Article and Find Full Text PDF

Enhancement of Zn adsorption on coal fly ash-based geopolymer with steel slag incorporation: Leaching behavior and performance insights.

Environ Pollut

January 2025

Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin, 130021, China.

Industrial solid wastes like coal fly ash (CFA) and steel slag pose environmental challenges, while the remediation of heavy metal-contaminated water remains a global priority. This study investigates the impact of incorporating steel slag during the synthesis of CFA-based geopolymers (CFAG) on the leaching characteristics of inherent heavy metals in CFA and the Zn adsorption performance of CFAG. Leaching experiments show geopolymerization effectively immobilizes heavy metals including Fe, Cr, As, Cd, and Ti in CFA while having little effect on Mn, V, and Ni.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!