Upper Critical Solution Temperature Polymer Phase Transition as a Tool for the Control of Inorganic Salt Crystallization Process.

Materials (Basel)

Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, ul. ks. M. Strzody 7, 44-100 Gliwice, Poland.

Published: September 2021

In this paper, the experimental research concerning the impact of the hydrophilic-hydrophobic transition of a polymer exhibiting the Upper Critical Solution Temperature (UCST) onto the crystallization process of inorganic salt is presented. A hypothesis was postulated that under favorable process conditions the sudden change of macromolecules properties and the resulting appearance of insoluble particles will induce the nucleation process of the salt. Since the transition point parameters may be precisely designed, the described mechanism would eliminate the stochastic nature of the crystallization process. Although performed experiments proved that the postulated process mechanism was incorrect, the presence of macromolecules had a significant impact on the crystallization course. The stochastic nature of the process was not eliminated; nevertheless, it seems that a specific point of nucleation was created which was independent of the cloud point temperature (T) of the polymer. Moreover, the surface morphology of crystals was changed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468619PMC
http://dx.doi.org/10.3390/ma14185373DOI Listing

Publication Analysis

Top Keywords

crystallization process
12
upper critical
8
critical solution
8
solution temperature
8
temperature polymer
8
inorganic salt
8
stochastic nature
8
process
7
polymer phase
4
phase transition
4

Similar Publications

Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.

View Article and Find Full Text PDF

Electrochemical Ammonia Synthesis at -Block Active Sites Using Various Nitrogen Sources: Theoretical Insights.

J Phys Chem Lett

January 2025

School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.

Electrochemical nitrogen conversion for ammonia (NH) synthesis, driven by renewable electricity, offers a sustainable alternative to the traditional Haber-Bosch process. However, this conversion process remains limited by a low Faradaic efficiency (FE) and NH yield. Although transition metals have been widely studied as catalysts for NH synthesis through effective electron donation/back-donation mechanisms, there are challenges in electrochemical environments, including competitive hydrogen evolution reaction (HER) and catalyst stability issues.

View Article and Find Full Text PDF

Guest-Molecule-Induced Glass-Crystal Transition in Organic-Inorganic Hybrid Antimony Halides.

Inorg Chem

January 2025

College of Chemistry and Materials Science, College of Environmental and Resource Sciences, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China.

The glassy state of inorganic-organic hybrid metal halides combines their excellent optoelectronic properties with the outstanding processability of glass, showcasing unique application potential in solar devices, display technologies, and plastic electronics. Herein, by tailoring the organic cation from -phenylpiperazine to dimethylamine gradually, four types of zero-dimensional antimony halides are obtained with various optical and thermal properties. The guest water molecules in crystal (-phenylpiperazine)SbCl·Cl·5HO lead to the largest distortion of the Sb-halogen unit, resulting in the red emission different from the yellow emission of other compounds.

View Article and Find Full Text PDF

Objectives: The aim of this systematic review and network meta-analysis was to compare the flexural strength of provisional fixed dental prostheses (PFDPs) fabricated using different 3D printing technologies, including digital light processing (DLP), stereolithography (SLA), liquid crystal display (LCD), selective laser sintering (SLS), Digital Light Synthesis (DLS), and fused deposition modeling (FDM).

Materials And Methods: A comprehensive literature search was conducted in databases including PubMed, Web of Science, Scopus, and Open Grey up to September 2024. Studies evaluating the flexural strength of PFDPs fabricated by 3D printing systems were included.

View Article and Find Full Text PDF

Nanozymes are next generation of enzyme mimics. Due to the lack of activity descriptors, most nanozymes were discovered through trial-and-error strategies or by accident. While eg occupancy in an octahedral crystal field was proven as an effective descriptor, the t2 in a tetrahedral crystal field has rarely been explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!