Potential Phase Change Materials in Building Wall Construction-A Review.

Materials (Basel)

The National Centre for Building and Construction Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia.

Published: September 2021

Phase change materials (PCMs) are an effective thermal mass and their integration into the structure of a building can reduce the ongoing costs of building operation, such as daily heating/cooling. PCMs as a thermal mass can absorb and retard heat loss to the building interior, maintaining comfort in the building. Although a large number of PCMs have been reported in the literature, only a handful of them, with their respective advantages and disadvantages, are suitable for building wall construction. Based on the information available in the literature, a critical evaluation of PCMs was performed in this paper, focusing on two aspects: (i) PCMs for building wall applications and (ii) the inclusion of PCMs in building wall applications. Four different PCMs, namely paraffin wax, fatty acids, hydrated salts, and butyl stearate, were identified as being the most suitable for building wall applications and these are explained in detail in terms of their physical and thermal properties. Although there are several PCM encapsulation techniques, the direct application of PCM in concrete admixtures is the most economical method to keep costs within manageable limits. However, care should be taken to ensure that PCM does not leak or drip from the building wall.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469304PMC
http://dx.doi.org/10.3390/ma14185328DOI Listing

Publication Analysis

Top Keywords

building wall
24
wall applications
12
building
10
phase change
8
change materials
8
thermal mass
8
suitable building
8
pcms building
8
pcms
7
wall
6

Similar Publications

To achieve the assembled connection between dovetail profiled steel sheets and the boundary members in dovetail profiled steel concrete composite shear walls (DPSCWs), self-tapping screws were employed. Three DPSCW specimens connected with self-tapping screws were tested under combined axial and cyclic lateral loads to evaluate their hysteretic response, focusing on the influence of the number of self-tapping screws and the axial compression ratio. The self-tapping screw-connected DPSCWs exhibited a mixed failure mode, characterized by shear failure of the profiled steel sheets and compression-bending failure of multiple wall limbs divided by ribs on the web concrete.

View Article and Find Full Text PDF

This study explores the potential of using underutilized materials from agricultural and forestry systems, such as rice husk, wheat straw, and wood strands, in developing corrugated core sandwich panels as a structural building material. By leveraging the unique properties of these biobased materials within a corrugated geometry, the research presents a novel approach to enhancing the structural performance of such underutilized biobased materials. These biobased materials were used in different lengths to consider the manufacturing feasibility of corrugated panels and the effect of fiber length on their structural performance.

View Article and Find Full Text PDF

The city's rapid development would lead to irreversible changes in architectural heritage. As one of the ways to promote sustainable development, world heritage tourism has opened up a new perspective for the protection, inheritance and development of architectural heritage. Taking the study of architectural heritage in the Historic Centre of Macau as an example, employing eye-tracking experiment and semantic differential method (SD method) to explore the relationship between tourists' perceptions of visual elements of architectural heritage, positive emotions, and behavioral intentions.

View Article and Find Full Text PDF

Utilizing the sparsity of the electronic structure problem, fragmentation methods have been researched for decades with great success, pushing the limits of ab initio quantum chemistry ever further. Recently, this set of methods has been expanded to include a fundamentally different approach called excitonic renormalization, providing promising initial results. It builds a supersystem Hamiltonian in a second-quantized-like representation from transition-density tensors of isolated fragments, contracted with biorthogonalized molecular integrals.

View Article and Find Full Text PDF

Nowadays, more and more buildings are being constructed from various types of modern materials. Many works have been written about these materials, which primarily focus on the influence of their properties on the thermal and acoustic insulation of, for example, building walls. However, there are very few publications analyzing the influence of construction materials on the dynamic properties of building structures and their vibration behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!