A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Full-Field Temperature Measurement of Stainless Steel Specimens Subjected to Uniaxial Tensile Loading at Various Strain Rates. | LitMetric

Full-Field Temperature Measurement of Stainless Steel Specimens Subjected to Uniaxial Tensile Loading at Various Strain Rates.

Materials (Basel)

Department of Metal Working and Physical Metallurgy of Non-Ferrous Metals, Faculty of Non-Ferrous Metals, AGH-University of Science and Technology, al. Adama Mickiewicza 30, 30-059 Cracow, Poland.

Published: September 2021

This article presents a study on the effect of strain rate, specimen orientation, and plastic strain on the value and distribution of the temperature of dog-bone 1 mm-thick specimens during their deformation in uniaxial tensile tests. Full-field image correlation and infrared thermography techniques were used. A titanium-stabilised austenitic 321 stainless steel was used as test materials. The dog-bone specimens used for uniaxial tensile tests were cut along the sheet metal rolling direction and three strain rates were considered: 4 × 10 s, 8 × 10 s and 16 × 10 s. It was found that increasing the strain rate resulted in the intensification of heat generation. High-quality regression models (Ra > 0.9) developed for the austenitic 321 steel revealed that sample orientation does not play a significant role in the heat generation when the sample is plastically deformed. It was found that at the moment of formation of a necking at the highest strain rate, the maximum sample temperature increased more than four times compared to the initial temperature. A synergistic effect of the strain hardening exponent and yield stress revealed that heat is generated more rapidly towards small values of strain hardening exponent and yield stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467389PMC
http://dx.doi.org/10.3390/ma14185259DOI Listing

Publication Analysis

Top Keywords

uniaxial tensile
12
strain rate
12
stainless steel
8
strain
8
strain rates
8
tensile tests
8
austenitic 321
8
heat generation
8
strain hardening
8
hardening exponent
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!