The need for diverse materials has emerged as industry becomes more developed, and there is a need for materials with pores in various industries, including the energy storage field. However, there is difficulty in product design and development using the finite element method because the mechanical properties of a porous material are different from those of a base material due to the pores. Therefore, in this study, a Python program that can estimate the equivalent property of a material with pores was developed and its matching was verified through comparison with the measurement results. For high-efficiency calculation, the pores were assumed to be circular or elliptical, and they were also assumed to be equally distributed in each direction. The material with pores was assumed to be an orthotropic material, and its equivalent mechanical properties were calculated using the equivalent strain and equivalent stress by using the appropriate material property matrix. The material properties of a specimen with the simulated pores were measured using UTM, and the results were compared with the simulation results to confirm that the degree of matching achieved 6.4%. It is expected that this study will contribute to the design and development of a product in the industrial field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472747 | PMC |
http://dx.doi.org/10.3390/ma14185132 | DOI Listing |
BMC Musculoskelet Disord
December 2024
The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
Background: Patellar fractures present challenges in treatment, with traditional methods often leading to complications such as loss of reduction and implant failure. This study aimed to compare a novel suture fixation technique with the traditional tension band method using finite element analysis.
Methods: CT images of a healthy 35-year-old male were used to construct 3D patellar models.
Biomech Model Mechanobiol
December 2024
Department of Biomedical Engineering, Virginia Commonwealth University, 401 W. Main St., Richmond, VA, 23284, USA.
Embryonic development, wound healing, and organogenesis all require assembly of the extracellular matrix protein fibronectin (FN) into insoluble, viscoelastic fibrils. FN fibrils mediate cell migration, force generation, angiogenic sprouting, and collagen deposition. While the critical role of FN fibrils has long been appreciated, we still have an extremely poor understanding of their mechanical properties and how these mechanical properties facilitate cellular responses.
View Article and Find Full Text PDFJ Mol Biol
December 2024
School of Biological Sciences, University of Edinburgh, Roger Land Building, Edinburgh EH9 3FF.
Molecular dynamics (MD) simulations can be used by protein scientists to investigate a wide array of biologically relevant properties such as the effects of mutations on a protein's structure and activity, or probing intermolecular interactions with small molecule substrates or other macromolecules. Within the world of computational structural biology, several programs have become popular for running these simulations, but each of these programs requires a significant time investment from the researcher to run even simple simulations. Even after learning how to run and analyse simulations, many elements remain a "black box.
View Article and Find Full Text PDFTissue Cell
December 2024
Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan. Electronic address:
Addressing mandibular defects poses a significant challenge in maxillofacial surgery. Recent advancements have led to the development of various biomimetic composite scaffolds aimed at facilitating mandibular defect reconstruction. This study aimed to assess the regenerative potential of a novel composite scaffold consisting of polylactic acid (PLA), hydroxyapatite nanoparticles (n-HA), gelatin, hesperidin, and human dental pulp stem cells (DPSCs) in a rat model of mandibular bone defect.
View Article and Find Full Text PDFClin Biomech (Bristol)
December 2024
Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada; Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada. Electronic address:
Background: Vertebral fractures in young populations are associated with intervertebral disc disorders later in life. However, damage to the annulus fibrosus has been observed in rapidly loaded spines even without the subsequent occurrence of a fracture. Therefore, it may not be the fracture event that compromises the disc, but rather the manner in which the disc is loaded.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!