Therapeutic Potential of Human Stem Cell Implantation in Alzheimer's Disease.

Int J Mol Sci

School of Biomedical, Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.

Published: September 2021

AI Article Synopsis

  • - Alzheimer's disease (AD) is the most common form of dementia in older adults, and currently, there is no effective treatment available; researchers are exploring stem cell therapy as a potential option.
  • - Preclinical studies indicate that stem cells can be successfully differentiated into neurons and improve cognitive performance in animal models, aligning with some initial results from ongoing clinical trials.
  • - Despite the promise shown in both preclinical and early clinical studies, challenges such as rejection, tumor formation, and ethical concerns remain significant barriers to the wider application of stem cell therapy for AD.

Article Abstract

Alzheimer's disease (AD) is a progressive debilitating neurodegenerative disease and the most common form of dementia in the older population. At present, there is no definitive effective treatment for AD. Therefore, researchers are now looking at stem cell therapy as a possible treatment for AD, but whether stem cells are safe and effective in humans is still not clear. In this narrative review, we discuss both preclinical studies and clinical trials on the therapeutic potential of human stem cells in AD. Preclinical studies have successfully differentiated stem cells into neurons in vitro, indicating the potential viability of stem cell therapy in neurodegenerative diseases. Preclinical studies have also shown that stem cell therapy is safe and effective in improving cognitive performance in animal models, as demonstrated in the Morris water maze test and novel object recognition test. Although few clinical trials have been completed and many trials are still in phase I and II, the initial results confirm the outcomes of the preclinical studies. However, limitations like rejection, tumorigenicity, and ethical issues are still barriers to the advancement of stem cell therapy. In conclusion, the use of stem cells in the treatment of AD shows promise in terms of effectiveness and safety.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471075PMC
http://dx.doi.org/10.3390/ijms221810151DOI Listing

Publication Analysis

Top Keywords

stem cell
20
cell therapy
16
stem cells
16
preclinical studies
16
stem
9
therapeutic potential
8
potential human
8
human stem
8
alzheimer's disease
8
safe effective
8

Similar Publications

Purpose: Voriconazole (VRC) is recommended for the prevention and treatment of invasive fungal infections in children undergoing hematopoietic stem cell transplantation (HSCT). It demonstrates nonlinear pharmacokinetics (PK) and exhibits substantial inter- and intraindividual variability. Phenytoin sodium (PHT) and methylprednisolone (MP) are commonly used in the early stages of HSCT to prevent epilepsy and graft-versus-host disease.

View Article and Find Full Text PDF

Discrete Synaptic Events Induce Global Oscillations in Balanced Neural Networks.

Phys Rev Lett

December 2024

Laboratoire de Physique Théorique et Modélisation, CY Cergy Paris Université, CNRS, UMR 8089, 95302 Cergy-Pontoise cedex, France.

Despite the fact that neural dynamics is triggered by discrete synaptic events, the neural response is usually obtained within the diffusion approximation representing the synaptic inputs as Gaussian noise. We derive a mean-field formalism encompassing synaptic shot noise for sparse balanced neural networks. For low (high) excitatory drive (inhibitory feedback) global oscillations emerge via continuous or hysteretic transitions, correctly predicted by our approach, but not from the diffusion approximation.

View Article and Find Full Text PDF

Echinococcus multilocularis delta/notch signalling components are expressed in post-mitotic cells.

Parasitol Res

December 2024

Institute of Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany.

Pluripotent somatic stem cells are the drivers of unlimited growth of Echinococcus multilocularis metacestode tissue within the organs of the intermediate host. To understand the dynamics of parasite proliferation within the host, it is therefore important to delineate basic mechanisms of Echinococcus stem cell maintenance and differentiation. We herein undertake the first step towards characterizing the role of an evolutionarily old metazoan cell-cell communication system, delta/notch signalling, in Echinococcus cell fate decisions.

View Article and Find Full Text PDF

Background: Activated Phosphoinositide 3-Kinase (PI3K) δ Syndrome (APDS), an inborn error of immunity due to upregulation of the PI3K pathway, leads to recurrent infections and immune dysregulation (lymphoproliferation and autoimmunity).

Methods: Clinical and genetic data of 28 APDS patients from 25 unrelated families were collected from fifteen Italian centers.

Results: Patients were genetically confirmed with APDS-1 (n = 20) or APDS-2 (n = 8), with pathogenic mutations in the PIK3CD or PIK3R1 genes.

View Article and Find Full Text PDF

Mesenchymal Stromal Cell (MSC) Isolation and Induction of Acute and Replicative Senescence.

Methods Mol Biol

December 2024

Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy.

Mesenchymal stromal cells (MSCs) are a heterogeneous population of non-hematopoietic adult stem cells derived from the embryonic mesoderm. They possess self-renewal and multipotent differentiation capabilities, allowing them to give rise to mesodermal cell types, such as osteoblasts, chondroblasts, and adipocytes, as well as non-mesodermal cells, including neuron-like cells and endothelial cells. MSCs play a vital role in maintaining homeostasis across various tissues by facilitating tissue repair, immune regulation, and inflammatory response balance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!