Eosinophils as Drivers of Severe Eosinophilic Asthma: Endotypes or Plasticity?

Int J Mol Sci

Laboratory of Cellular and Molecular Immunology, B34, GIGA Institute and Faculty of Veterinary Medicine, Liège University, 4000 Liège, Belgium.

Published: September 2021

Asthma is now recognized as a heterogeneous disease, encompassing different phenotypes driven by distinct pathophysiological mechanisms called endotypes. Common phenotypes of asthma, referred to as eosinophilic asthma, are characterized by the presence of eosinophilia. Eosinophils are usually considered invariant, terminally differentiated effector cells and have become a primary therapeutic target in severe eosinophilic asthma (SEA) and other eosinophil-associated diseases (EADs). Biological treatments that target eosinophils reveal an unexpectedly complex role of eosinophils in asthma, including in SEA, suggesting that "not all eosinophils are equal". In this review, we address our current understanding of the role of eosinophils in asthma with regard to asthma phenotypes and endotypes. We further address the possibility that different SEA phenotypes may involve differences in eosinophil biology. We discuss how these differences could arise through eosinophil "endotyping", viz. adaptations of eosinophil function imprinted during their development, or through tissue-induced plasticity, viz. local adaptations of eosinophil function through interaction with their lung tissue niches. In doing so, we also discuss opportunities, technical challenges, and open questions that, if addressed, might provide considerable benefits in guiding the choice of the most efficient precision therapies of SEA and, by extension, other EADs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467265PMC
http://dx.doi.org/10.3390/ijms221810150DOI Listing

Publication Analysis

Top Keywords

eosinophilic asthma
12
severe eosinophilic
8
asthma
8
role eosinophils
8
eosinophils asthma
8
differences eosinophil
8
adaptations eosinophil
8
eosinophil function
8
eosinophils
6
eosinophils drivers
4

Similar Publications

A 78-years-old man was treated for asthma and pansinusitis for >5 years, and mepolizumab was initiated two years previously. Two months after the cessation of mepolizumab treatment, the asthma symptoms worsened and acute progressive muscle weakness and sensory disturbance developed. On day 8 after the onset of weakness and hypoesthesia, the patient presented with complete flaccid tetraplegia and diffuse hypoesthesia of all extremities, without paresthesia or pain, and was admitted to our hospital.

View Article and Find Full Text PDF

Background: Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder marked by eosinophilic infiltration of the esophageal mucosa. Despite advances in understanding and management, optimal therapeutic strategies remain unclear, with conflicting guidelines.

Objective: We sought to evaluate effectiveness and safety of topical corticosteroids (TCSs) and proton pump inhibitors (PPIs) in managing EoE and their economic implications in Italy.

View Article and Find Full Text PDF

Background: Eosinophilic granulomatosis with polyangiitis (EGPA) is an extremely rare type of vasculitis characterized by inflammation within small blood vessels or tissues that may cause damage to the lungs, heart, kidneys, and other organs. Here, we present a rare case of EGPA with cardiac involvement that presented with acute heart failure.

Clinical Findings: A 44-year-old woman with a history of bronchial asthma and sinusitis presented with fever, shortness of breath, fatigue, unintentional weight loss, and polyarthritis.

View Article and Find Full Text PDF

Anti-IL-5 treatment, but not neutrophil interference, attenuates inflammation in a mixed granulocytic asthma mouse model, elicited by air pollution.

Respir Res

January 2025

Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Medical Research Building (MRB) II, Ghent University Hospital, 2 Floor, Corneel Heymanslaan 10, 9000, Ghent, Belgium.

Introduction: Diesel exhaust particles (DEP) have been proven to aggravate asthma pathogenesis. We previously demonstrated that concurrent exposure to house dust mite (HDM) and DEP in mice increases both eosinophils and neutrophils in bronchoalveolar lavage fluid (BALF) and also results in higher levels of neutrophil-recruiting chemokines and neutrophil extracellular trap (NET) formation compared to sole HDM, sole DEP or saline exposure. We aimed to evaluate whether treatment with anti-IL-5 can alleviate the asthmatic features in this mixed granulocytic asthma model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!