Organochlorine pesticides, such as DDT, methoxychlor, and their metabolites, have been characterized as endocrine disrupting chemicals (EDCs); suggesting that their modes of action involve interaction with or abrogation of endogenous endocrine function. This study examined whether embryonic thymocyte death and alteration of differentiation induced by the primary metabolite of methoxychlor, HPTE, rely upon estrogen receptor binding and concurrent T cell receptor signaling. Estrogen receptor inhibition of ERα or GPER did not rescue embryonic thymocyte death induced by HPTE or the model estrogen diethylstilbestrol (DES). Moreover, adverse effects induced by HPTE or DES were worsened by concurrent TCR and CD2 differentiation signaling, compared with EDC exposure post-signaling. Together, these data suggest that HPTE- and DES-induced adverse effects on embryonic thymocytes do not rely solely on ER alpha or GPER but may require both. These results also provide evidence of a potential collaborative signaling mechanism between TCR and estrogen receptors to mediate adverse effects on embryonic thymocytes, as well as highlight a window of sensitivity that modulates EDC exposure severity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471014 | PMC |
http://dx.doi.org/10.3390/ijms221810138 | DOI Listing |
Dev Biol
December 2024
University of Edinburgh, Institute for Immunology and Infection Research, Edinburgh, United Kingdom. Electronic address:
Chickens are renowned as a model for embryogenesis but have also been responsible for crucial advances in virology, cancer research and immunology. However, chickens are best known as a major source of animal protein for human nutrition, with roughly 80 billion chickens alive each year supplying meat and eggs, the vast majority part of a global poultry industry. As a result, avian immunology been studied intensively for over 60 years, and it has become clear that a major genetic locus in chickens determining resistance to infectious disease and response to vaccines is the major histocompatibility complex (MHC).
View Article and Find Full Text PDFNat Commun
December 2024
Crown Princess Victoria Children's Hospital, and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden.
Females exhibit a more robust immune response to both self-antigens and non-self-antigens than males, resulting in a higher prevalence of autoimmune diseases but more effective responses against infection. Increased expression of X-linked immune genes in female T cells is thought to underlie this enhanced response. Here we isolate thymocytes from pediatric thymi of healthy males (46, XY), females (46, XX), a female with completely skewed X-chromosome inactivation (46, XX, cXCI) and a female with Turner syndrome (45, X0).
View Article and Find Full Text PDFAdv Exp Med Biol
July 2024
Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
Myocyte enhancer factor 2 (MEF2) is a key transcription factor (TF) in skeletal, cardiac, and neural tissue development and includes four isoforms: MEF2A, MEF2B, MEF2C, and MEF2D. These isoforms significantly affect embryonic development, nervous system regulation, muscle cell differentiation, B- and T-cell development, thymocyte selection, and effects on tumorigenesis and leukemia. This chapter describes the multifaceted roles of MEF2 family proteins, covering embryonic development, nervous system regulation, and muscle cell differentiation.
View Article and Find Full Text PDFJ Exp Med
October 2024
Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
In the vertebrate immune system, thymus stromal microenvironments support the generation of αβT cells from immature thymocytes. Thymic epithelial cells are of particular importance, and the generation of cortical and medullary epithelial lineages from progenitor stages controls the initiation and maintenance of thymus function. Here, we discuss the developmental pathways that regulate thymic epithelial cell diversity during both the embryonic and postnatal periods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!