Ischemic stroke is the leading cause of mortality and long-term disability worldwide. Disruption of the blood-brain barrier (BBB) is a prominent pathophysiological mechanism, responsible for a series of subsequent inflammatory cascades that exacerbate the damage to brain tissue. However, the benefit of recanalization is limited in most patients because of the narrow therapeutic time window. Recently, mesenchymal stem cells (MSCs) have been assessed as excellent candidates for cell-based therapy in cerebral ischemia, including neuroinflammatory alleviation, angiogenesis and neurogenesis promotion through their paracrine actions. In addition, accumulating evidence on how MSC therapy preserves BBB integrity after stroke may open up novel therapeutic targets for treating cerebrovascular diseases. In this review, we focus on the molecular mechanisms of MSC-based therapy in the ischemia-induced prevention of BBB compromise. Currently, therapeutic effects of MSCs for stroke are primarily based on the fundamental pathogenesis of BBB breakdown, such as attenuating leukocyte infiltration, matrix metalloproteinase (MMP) regulation, antioxidant, anti-inflammation, stabilizing morphology and crosstalk between cellular components of the BBB. We also discuss prospective studies to improve the effectiveness of MSC therapy through enhanced migration into defined brain regions of stem cells. Targeted therapy is a promising new direction and is being prioritized for extensive research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468469PMC
http://dx.doi.org/10.3390/ijms221810045DOI Listing

Publication Analysis

Top Keywords

blood-brain barrier
8
molecular mechanisms
8
stem cells
8
msc therapy
8
therapy
6
bbb
5
mesenchymal stem/stromal
4
stem/stromal cell
4
cell therapy
4
therapy blood-brain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!