Previously, we demonstrated the degeneration of axon terminals in mice after repeated injections of blood sera from amyotrophic lateral sclerosis (ALS) patients with identified mutations. However, whether a similar treatment affects the cell body of motor neurons (MNs) remained unresolved. Sera from healthy individuals or ALS patients with a mutation in different ALS-related genes were intraperitoneally injected into ten-week-old male Balb/c mice ( = 3/serum) for two days. Afterward, the perikaryal calcium level was measured using electron microscopy. Furthermore, the optical disector method was used to evaluate the number of lumbar MNs. The cytoplasmic calcium level of the lumbar MNs of the ALS-serum-treated mice, compared to untreated and healthy-serum-treated controls, was significantly elevated. While injections of the healthy serum did not reduce the number of MNs compared to the untreated control group, ALS sera induced a remarkable loss of MNs. Similarly to the distant motor axon terminals, the injection of blood sera of ALS patients has a rapid degenerative effect on MNs. Analogously, the magnitude of the evoked changes was specific to the type of mutation; furthermore, the degeneration was most pronounced in the group treated with sera from ALS patients with a mutation in the gene.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8470779 | PMC |
http://dx.doi.org/10.3390/ijms22189994 | DOI Listing |
J Voice
January 2025
Department of Otolaryngology-Head and Neck Surgery, Boston Medical Center, Boston, MA; Boston University Chobanian and Avedisian School of Medicine, Boston, MA. Electronic address:
Introduction: Patient-reported outcome measures (PROMs) represent an important part of a comprehensive voice assessment for clinical care and research. Access to multilingual PROMs enables inclusion of information from diverse patient populations. This review compares available translated and validated PROMs for adult dysphonia.
View Article and Find Full Text PDFPLoS One
January 2025
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Introduction: Haemodynamic atrioventricular delay (AVD) optimisation has primarily focussed on signals that are not easy to acquire from a pacing system itself, such as invasive left ventricular catheterisation or arterial blood pressure (ABP). In this study, standard clinical central venous pressure (CVP) signals are tested as a potential alternative.
Methods: Sixteen patients with a temporary pacemaker after cardiac surgery were studied.
Mol Neurobiol
January 2025
Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative malady that causes progressive degeneration and loss of motor neuron function in the brain and spinal cord, eventually resulting in muscular atrophy, paralysis, and death. Neural stem/progenitor cell (NSPC) transplantation can improve bodily function in animals and delay disease progression in patients with ALS. This paper summarizes and analyzes the efficacy and safety of neural stem/progenitor cell (NSPC) transplantation as a treatment for ALS, aiming to improve function and delay disease progression in patients.
View Article and Find Full Text PDFNeurol Sci
January 2025
Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar.
Objective: Tofersen, an antisense oligonucleotide, has recently received FDA and EMA approval for treating amyotrophic lateral sclerosis (ALS) in adults with SOD1 gene mutations. This systematic review and meta-analysis synthesized evidence on tofersen's safety and efficacy in patients with SOD1-related ALS.
Methods: A comprehensive search of three databases was conducted from inception through October 2024.
Brain
January 2025
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Nerve conduction F-wave studies contain critical information about subclinical motor dysfunction which may be used to diagnose patients with amyotrophic lateral sclerosis (ALS). However, F-wave responses are highly variable in morphology, making waveform interpretation challenging. Artificial Intelligence techniques can extract time-frequency features to provide new insights into ALS diagnosis and prognosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!