A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep Sequencing Discovery and Profiling of Known and Novel miRNAs Produced in Response to DNA Damage in Rice. | LitMetric

Deep Sequencing Discovery and Profiling of Known and Novel miRNAs Produced in Response to DNA Damage in Rice.

Int J Mol Sci

Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China.

Published: September 2021

Under extreme environmental conditions such as ultraviolet and ionizing radiation, plants may suffer DNA damage. If these damages are not repaired accurately and rapidly, they may lead to chromosomal abnormalities or even cell death. Therefore, organisms have evolved various DNA repair mechanisms to cope with DNA damage which include gene transcription and post-translational regulation. MicroRNA (miRNA) is a type of non-coding single-stranded RNA molecule encoded by endogenous genes. They can promote DNA damage repair by regulating target gene transcription. Here, roots from seedlings of the rice cultivar 'Yandao 8' that were treated with bleomycin were collected for transcriptome-level sequencing, using non-treated roots as controls. A total of 14,716,232 and 17,369,981 reads mapping to miRNAs were identified in bleomycin-treated and control groups, respectively, including 513 known and 72 novel miRNAs. Compared with the control group, 150 miRNAs showed differential expression levels. Target predictions of these differentially expressed miRNAs yielded 8731 potential gene targets. KEGG annotation and a gene ontology analysis indicated that the highest-ranked target genes were classified into metabolic processes, RNA degradation, DNA repair, and so on. Notably, the DNA repair process was significantly enriched in both analyses. Among these differentially expressed miRNAs, 58 miRNAs and 41 corresponding potential target genes were predicted to be related to DNA repair. RT-qPCR results confirmed that the expression patterns of 20 selected miRNAs were similar to those from the sequencing results, whereas four miRNAs gave opposite results. The opposing expression patterns of several miRNAs with regards to their target genes relating to the DNA repair process were also validated by RT-qPCR. These findings provide valuable information for further functional studies of miRNA involvement in DNA damage repair in rice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472271PMC
http://dx.doi.org/10.3390/ijms22189958DOI Listing

Publication Analysis

Top Keywords

dna damage
20
dna repair
20
target genes
12
mirnas
10
dna
10
novel mirnas
8
gene transcription
8
damage repair
8
differentially expressed
8
expressed mirnas
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!