In order to understand protein structure to a sufficient extent for, e.g., drug discovery, no single technique can provide satisfactory information on both the lowest-energy conformation and on dynamic changes over time (the 'four-dimensional' protein structure). Instead, a combination of complementary techniques is required. Mass spectrometry methods have shown promise in addressing protein dynamics, but often rely on the use of high-end commercial or custom instruments. Here, we apply well-established chemistry to conformation-sensitive oxidative protein labelling on a timescale of a few seconds, followed by analysis through a routine protein analysis workflow. For a set of model proteins, we show that site selectivity of labelling can indeed be rationalised in terms of known structural information, and that conformational changes induced by ligand binding are reflected in the modification pattern. In addition to conventional bottom-up analysis, further insights are obtained from intact mass measurement and native mass spectrometry. We believe that this method will provide a valuable and robust addition to the 'toolbox' of mass spectrometry researchers studying higher-order protein structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469487 | PMC |
http://dx.doi.org/10.3390/ijms22189927 | DOI Listing |
J Microsc
January 2025
The Sainsbury Laboratory, University of East Anglia, Norwich, UK.
Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South Wales, Australia.
Phosphodiesterase 5 (PDE5) inhibitors have shown great potential in treating Alzheimer's disease by improving memory and cognitive function. In this study, we evaluated fluspirilene, a drug commonly used to treat schizophrenia, as a potential PDE5 inhibitor using computational methods. Molecular docking revealed that fluspirilene binds strongly to PDE5, supported by hydrophobic and aromatic interactions.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
College of Food Science and Technology, Bohai University, Jinzhou, China.
Background: Soy protein isolate (SPI) has poor emulsifying ability because of its low molecular flexibility and compact structure, limiting its application in extruded protein-based foods. Extrusion technology has emerged as a promising way to alter the structural properties of proteins. Therefore, the impacts of grape seed proanthocyanidin (GSP) on structural and emulsifying characteristics of SPI in extrusion field were explored in this study.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China.
Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.
View Article and Find Full Text PDFSmall
January 2025
School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
Covalent organic frameworks (COFs), known for their exceptional in situ encapsulation and precise release capabilities, are emerging as pioneering drug delivery systems. This study introduces a hypoxia-responsive COF designed to encapsulate the chemotherapy drug gambogic acid (GA) in situ. Bimetallic gold-palladium islands were grown on UiO-66-NH (UiO) to form UiO@Au-Pd (UAPi), which were encapsulated with GA through COF membrane formation, resulting in a core-shell structure (UAPiGC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!