L-asparaginase (L-ASNase) is a vital enzyme with a broad range of applications in medicine and food industry. Drawbacks of current commercial L-ASNases stimulate the search for better-producing sources of the enzyme, and extremophiles are especially attractive in this view. In this study, a novel L-asparaginase originating from the hyperthermophilic archaeon (TsA) was expressed in , purified and characterized. The enzyme is optimally active at 90 °C and pH 9.0 with a specific activity of 2164 U/mg towards L-asparagine. Kinetic parameters K and V for the enzyme are 2.8 mM and 1200 µM/min, respectively. TsA is stable in urea solutions 0-6 M and displays no significant changes of the activity in the presence of metal ions Ni, Cu, Mg, Zn and Ca and EDTA added in concentrations 1 and 10 mmol/L except for Fe. The enzyme retains 86% of its initial activity after 20 min incubation at 90 °C, which should be enough to reduce acrylamide formation in foods processed at elevated temperatures. TsA displays strong cytotoxic activity toward cancer cell lines K562, A549 and Sk-Br-3, while normal human fibroblasts WI-38 are almost unsensitive to it. The enzyme seems to be a promising candidate for further investigation and biotechnology application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8470970PMC
http://dx.doi.org/10.3390/ijms22189894DOI Listing

Publication Analysis

Top Keywords

novel l-asparaginase
8
hyperthermophilic archaeon
8
biotechnology application
8
enzyme
6
l-asparaginase hyperthermophilic
4
archaeon heterologous
4
heterologous expression
4
expression characterization
4
characterization biotechnology
4
application l-asparaginase
4

Similar Publications

L-asparagine is an essential amino acid for cell growth and common constituent of all the proteins. During high temperature food processing it reacts with reducing sugars and leads to acrylamide production through a complex process known as Maillard reaction. L-asparaginase hydrolyses the amine-group of L-asparagine to produce aspartic acid and ammonia.

View Article and Find Full Text PDF

A human-like glutaminase-free asparaginase is highly efficacious in ASNS leukemia and solid cancer mouse xenograft models.

Cancer Lett

December 2024

Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, USA; Enzyme By Design Inc., Chicago, USA; Research Biologist, Biological Science Research and Development, Department of Veterans Affairs Medical Center, Chicago, IL, USA. Electronic address:

L-asparaginase (L-ASNase) is crucial in treating pediatric acute lymphoblastic leukemia (ALL), but its use is hampered by side effects from the immunogenicity and L-glutaminase (L-GLNase) co-activity of FDA-approved bacterial L-ASNases, often leading to treatment discontinuation and poor outcomes. The toxicity of these L-ASNases makes them especially challenging to use in adult cancer patients. To overcome these issues, we developed EBD-200, a humanized guinea pig L-ASNase with low Km and no L-GLNase activity, eliminating glutamine-related toxicity.

View Article and Find Full Text PDF

The application of the amidohydrolase enzyme, L-asparaginase (ASNase), as a biocatalyst in the food and pharmaceutical industries has garnered significant interest. However, challenges such as hypersensitivity reactions, limited stability, and reusability under various operational conditions have hindered its cost-effective utilization. This paper introduces a novel nano-support for ASNase immobilization, namely the nanocomposite of iron oxide magnetic nanoparticles and amino acid-decorated graphene oxide (GO-Asp-FeO).

View Article and Find Full Text PDF

Purpose: L-asparaginase has been widely recognized as a critical component in the treatment of various types of lymphoproliferative disorders, since its introduction in 1960s. However, its use in some cases leads to allergic reactions rendering the continuation of treatment unfeasible. Thus, the development of L-asparaginase from alternative sources or the production of engineered enzymes have always been considered.

View Article and Find Full Text PDF

Fire blight, caused by Erwinia amylovora, is a destructive bacterial disease affecting pear and apple trees. The biocontrol ability of Pseudomonas fluorescens EK007 suppresses E. amylovora through competitive exclusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!