Temperature is an important factor that largely affects the patterns of shoot branching in plants. However, the effect and mechanism of temperature on axillary bud development in chrysanthemum remains poorly defined. The purpose of the present study is to investigate the effect of high temperature on the axillary bud growth and the mechanism of axillary bud formation in chrysanthemum. Decapitation experiments combined with the transcriptome analysis were designed. Results showed that the axillary bud length was significantly inhibited by high temperature. Decapitation of primary shoot (primary decapitation) resulted in slower growth of axillary buds (secondary buds) under 35 °C. However, secondary decapitation resulted in complete arrest of tertiary buds at high temperature. These results demonstrated that high temperature not only inhibited axillary bud formation but also retarded bud outgrowth in chrysanthemum. Comparative transcriptome suggested differentially expressed gene sets and identified important modules associated with bud formation. This research helped to elucidate the regulatory mechanism of high temperature on axillary bud growth, especially bud formation in chrysanthemum. Meanwhile, in-depth studies of this imperative temperature signaling can offer the likelihood of vital future applications in chrysanthemum breeding and branching control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469267 | PMC |
http://dx.doi.org/10.3390/ijms22189704 | DOI Listing |
Int J Biol Macromol
January 2025
School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, China. Electronic address:
The GRAS gene family, is instrumental in a myriad of biological processes, including plant growth and development. Our findings revealed that Paeonia ludlowii (Stern & G.Taylor) D.
View Article and Find Full Text PDFPhysiol Plant
January 2025
International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China.
Plant architecture and subsequent productivity are determined by the shoot apical dominance, which is disturbed by the deficiency of boron, one of the essential trace elements for plant growth and reproduction. However, the mechanism by which B controls shoot apical dominance or axillary bud outgrows under B deficiency is still unclear. This work aimed to investigate the mechanistic basis of this process, with focus on the interaction between B and polar auxin transport.
View Article and Find Full Text PDFJ Proteomics
January 2025
State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China. Electronic address:
The ability of axillary meristems to form axillary buds and subsequently develop into branches is influenced by phytohormones, environmental conditions, and genetic factors. The main trunk of Quercus fabri is prone to branching, which not only impacts the appearance and density of the wood and significantly reduces the yield rate. This study conducted transcriptomic, proteomic, and metabolomic analyses on three stages of axillary bud development in Q.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Leibniz University Hannover, Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Hannover, Germany.
Introduction: The presence of wounds in addition to the excision-induced wounds after severance from the stock plants is known to positively influence adventitious root formation of woody plant cuttings. Previous morphological studies highlighted laser wounding as a technique allowing to precisely control the decisive ablation depth. However, the biochemical processes involved in the response of rooting to the additional wounding remained unexplored.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan Province, China.
Background: P. yunnanensis, a distinctive economic tree species native to Yunnan Province in China, possesses axillary buds that serve as superior material for asexual propagation. However, under natural growth conditions, the differentiation of these axillary buds is notably scarce.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!