The development of new photodynamic therapy (PDT) agents designed for bladder cancer (BC) treatments is of utmost importance to prevent its recurrence and progression towards more invasive forms. Here, three different porphyrinic photosensitizers (PS) (TMPyP, Zn-TMPyP, and P1-C) were non-covalently loaded onto graphene oxide (GO) or graphene quantum dots (GQDs) in a one-step process. The cytotoxic effects of the free PS and of the corresponding hybrids were compared upon blue (BL) and red-light (RL) exposure on T24 human BC cells. In addition, intracellular reactive oxygen species (ROS) and singlet oxygen generation were measured. TMPyP and Zn-TMPyP showed higher efficiency under BL (IC: 0.42 and 0.22 μm, respectively), while P1-C was more active under RL (IC: 0.14 μm). In general, these PS could induce apoptotic cell death through lysosomes damage. The in vitro photosensitizing activity of the PS was not compromised after their immobilization onto graphene-based nanomaterials, with Zn-TMPyP@GQDs being the most promising hybrid system under RL (IC: 0.37 μg/mL). Overall, our data confirm that GO and GQDs may represent valid platforms for PS delivery, without altering their performance for PDT on BC cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8470602 | PMC |
http://dx.doi.org/10.3390/pharmaceutics13091512 | DOI Listing |
Polymers (Basel)
January 2025
School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China.
Poly(glycolic acid) (PGA) is a rapidly degradable polymer mainly used in medical applications, attributed to its relatively high cost. Reducing its price will boost its utilization in a wider range of application fields, such as gas barriers and shale gas extraction. This article presents a strategy that utilizes recycled PGA as a raw material alongside typical carbon nanomaterials, such as graphene oxide nanosheets (GO) and carbon nanotubes (CNTs), to produce low-cost, fully degradable yarns via electrospinning and twisting techniques.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
The highly selective and sensitive determination of pesticide residues in food is critical for human health protection. Herein, the specific selectivity of molecularly imprinted polymers (MIPs) was proposed to construct an electrochemical sensor for the detection of carbendazim (CBD), one of the famous broad-spectrum fungicides, by combining with the synergistic effect of bioelectrocatalysis and nanocomposites. Gold nanoparticle-reduced graphene oxide (AuNP-rGO) composites were electrodeposited on a polished glassy carbon electrode (GCE).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Key Laboratory of Bamboo Research of Zhejiang Province, Zhejiang Academy of Forestry, Hangzhou 310023, China.
Bamboo was carbonized and further modified via co-doping with graphene oxide (GO) and polyaniline (PANI) to prepare microwave absorption composites (GO/PANI/CB) by in situ polymerization of 1R-(-)-Camphorsulfonic acid (L-CSA). The conductivity of GO/PANI/CB reached 2.17 ± 0.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea.
An energy crisis, resulting from rapid population growth and advancements in the Internet of Things, has increased the importance of energy management strategies. Conventionally, energy management is conducted using sensors; however, additional energy is required to maintain sensor operation within these systems. Herein, an all-fiber-based triboelectric nanogenerator with O plasma treatment, graphene oxide/tannic acid solution coating, and hexane/1-octadecanethiol solution coating (AFT-OGH) is fabricated to implement a self-powered sensor, generating a high electrical power density, of 0.
View Article and Find Full Text PDFMolecules
December 2024
College of Mechanical and Electronic Engineering, Tarim University, Alar 843300, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!