Microencapsulated Chitosan-Based Nanocapsules: A New Platform for Pulmonary Gene Delivery.

Pharmaceutics

Nanobiofar Group, Department of Pharmacology, Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.

Published: August 2021

In this work, we propose chitosan (CS)-based nanocapsules (NCs) for pulmonary gene delivery. Hyaluronic acid (HA) was incorporated in the NCs composition (HA/CS NCs) aiming to promote gene transfection in the lung epithelium. NCs were loaded with a model plasmid (pCMV-βGal) to easily evaluate their transfection capacity. The plasmid encapsulation efficiencies were of approx. 90%. To facilitate their administration to the lungs, the plasmid-loaded NCs were microencapsulated in mannitol (Ma) microspheres (MS) using a simple spray-drying technique, obtaining dry powders of adequate properties. In vivo, the MS reached the deep lung, where the plasmid-loaded CS-based NCs were released and transfected the alveolar cells more homogeneously than the control formulation of plasmid directly microencapsulated in Ma MS. The HA-containing formulation achieved the highest transfection efficiency, in a more extended area and more homogeneously distributed than the rest of tested formulations. The new micro-nanostructured platform proposed in this work represents an efficient strategy for the delivery of genetic material to the lung, with great potential for the treatment of genetic lung diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472419PMC
http://dx.doi.org/10.3390/pharmaceutics13091377DOI Listing

Publication Analysis

Top Keywords

pulmonary gene
8
gene delivery
8
ncs
6
microencapsulated chitosan-based
4
chitosan-based nanocapsules
4
nanocapsules platform
4
platform pulmonary
4
delivery work
4
work propose
4
propose chitosan
4

Similar Publications

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the coronavirus disease 2019 (COVID-19) pandemic, remains endemic worldwide ∼5 years since the first documented case. Severe COVID-19 is widely considered to be caused by a dysregulated immune response to SARS-CoV-2 within the respiratory tract. Circulating levels of the chemokine CXCL10 are strongly positively associated with poor outcome; however, its precise role in pathogenesis and its suitability as a therapeutic target have remained undefined.

View Article and Find Full Text PDF

Role of the TME in immune checkpoint blockade resistance of non-small cell lung cancer.

Cancer Drug Resist

December 2024

Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.

Primary and secondary resistance to immune checkpoint blockade (ICB) reduces its efficacy. The mechanisms underlying immunotherapy resistance are highly complex. In non-small cell lung cancer (NSCLC), these mechanisms are primarily associated with the loss of programmed cell death-ligand 1 (PD-L1) expression, genetic mutations, circular RNA axis and transcription factor regulation, antigen presentation disorders, and dysregulation of signaling pathways.

View Article and Find Full Text PDF

Mechanisms of immunotherapy resistance in small cell lung cancer.

Cancer Drug Resist

December 2024

Department of Medical Oncology, Yale School of Medicine, New Haven, CT 06510, USA.

Small-cell lung cancer (SCLC) is an aggressive neuroendocrine tumor with a poor prognosis. Although the addition of immunotherapy to chemotherapy has modestly improved outcomes, most patients rapidly develop resistance. Resistance to immunotherapy can be broadly categorized into primary resistance and acquired resistance, as proposed by the Society for Immunotherapy of Cancer (SITC) consensus definition.

View Article and Find Full Text PDF

Circular RNAs (circRNAs), covalently closed single-stranded RNAs, have been implicated in cancer progression. A previous investigation revealed that circ-ZEB1 is expressed abnormally in liver cancer. However, the roles of circ-ZEB1 in non-small cell lung cancer (NSCLC) are unknown.

View Article and Find Full Text PDF

Objectives: This study aims to assess the potential mechanism of rutin to treat triple-negative breast cancer (TNBC) based on network pharmacology followed by experiments.

Methods: The potential rutin targets were predicted, and the DisGeNET database was used to obtain the disease targets. The intersection targets were identified with Venny 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!