The Abiotic Formation of Pyrrole under Volcanic, Hydrothermal Conditions-An Initial Step towards Life's First Breath?

Life (Basel)

Bayerisches NMR Zentrum, Strukturelle Membranbiochemie, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany.

Published: September 2021

Porphyrins, corrins, and tetrapyrroles constitute macrocycles in essential biomolecules such as heme, chlorophyll, cobalamin, and cofactor F430. The chemical synthesis as well as the enzymatic synthesis of these macrocycles starts from pyrrole derivatives. We here show that pyrrole and dimethyl pyrrole can be formed under the simulated volcanic, hydrothermal conditions of Early Earth, starting from acetylene, propyne, and ammonium salts in the presence of NiS or CoS as catalysts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471139PMC
http://dx.doi.org/10.3390/life11090980DOI Listing

Publication Analysis

Top Keywords

volcanic hydrothermal
8
abiotic formation
4
pyrrole
4
formation pyrrole
4
pyrrole volcanic
4
hydrothermal conditions-an
4
conditions-an initial
4
initial step
4
step life's
4
life's breath?
4

Similar Publications

Perturbations in Microbial Communities at Hydrothermal Vents of Panarea Island (Aeolian Islands, Italy).

Biology (Basel)

January 2025

Dipartimento Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.

Marine hydrothermal ecosystems represent extreme environments connected to submarine volcanic areas characterized by vents, having high temperatures and particular chemical compositions. The hydrothermal marine system of Panarea, located in one of the seven small islands belonging to the Aeolian Archipelago (southern Tyrrhenian Sea), is characterized by a range of vents exhibiting diverse physical and chemical conditions. We aimed to analyze the microbial community of a peculiar hot spring belonging to the Panarea hydrothermal field, known as "Black Point" (BP), in two separate sampling expeditions (May and August).

View Article and Find Full Text PDF

Massive injection of C depleted carbon to the ocean and atmosphere coincided with major environmental upheaval multiple times in the geological record. For several events, the source of carbon has been attributed to explosive venting of gas produced when magmatic sills intruded organic-rich sediment. The concept mostly derives from studies of a few ancient sedimentary basins with numerous hydrothermal vent complexes (HTVCs) where craters appear to have formed across large areas of the seafloor at the same time, but good examples remain rare in strata younger than the Early Eocene.

View Article and Find Full Text PDF

Nanoparticles (NPs) exhibit high reactivity and mobility in the environment, and a significant capacity to penetrate living organisms, potentially leading to harmful effects. Volcanoes are the second major source of natural NPs emitted into the atmosphere, with an estimated flux of 342 Tg/year. Few studies have focused on their fate.

View Article and Find Full Text PDF

Abiotic H and hydrocarbons are found in fluids discharged from ultramafic-hosted hydrothermal vents. Beneath the hydrothermal vents, abiotic H and hydrocarbons can be formed by serpentinization reactions and Fischer-Tropsch-type hydrocarbon-forming reactions, respectively, over ultramafic rocks. However, the source rocks that form abiotic H and hydrocarbons may extend to broader subsurface rocks.

View Article and Find Full Text PDF

The Laurani high-sulfidation epithermal deposit, located in the northeastern Altiplano of Bolivia, is a representative gold-polymetallic deposit linked to the late Miocene volcanic rocks that were formed approximately at about 7.5 Ma. At Laurani, four mineralization stages are defined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!