Mining sites development have had a significant impact on local socioeconomic conditions, the environment, and sustainability. However, the transformation of camp-type artisanal and small-scale gold mining (ASGM) sites with large influxes of miners from different regions has not been properly evaluated, owing to the closed nature of the ASGM sector. Here, we use remote sensing imagery and field investigations to assess ASGM sites with large influxes of miners living in mining camps in Bone Bolango Regency, Gorontalo Province, Indonesia, in 1995-2020. Built-up areas were identified as indicators of transformation of camp-type ASGM sites, using the Normalized Difference Vegetation Index, from the time series of images obtained using Google Earth Engine, then correlated with the prevalent gold market price. An 18.6-fold increase in built-up areas in mining camps was observed in 2020 compared with 1995, which correlated with increases in local gold prices. Field investigations showed that miner influx also increased after increases in gold prices. These findings extend our understanding of the rate and scale of development in the closed ASGM sector and the driving factors behind these changes. Our results provide significant insight into the potential rates and levels of socio-environmental pollution at local and community levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467769 | PMC |
http://dx.doi.org/10.3390/ijerph18189441 | DOI Listing |
Cells
December 2024
Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
Podocytes express large-conductance Ca-activated K channels (BK channels) and at least two different pore-forming KCa1.1 subunit C-terminal splice variants, known as VEDEC and EMVYR, along with auxiliary β and γ subunits. Podocyte KCa1.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, China.
Coastal wetlands contain very large carbon (C) stocks-termed as blue C-and their management has emerged as a promising nature-based solution for climate adaptation and mitigation. The interactions among sources, pools, and molecular compositions of soil organic C (SOC) within blue C ecosystems (BCEs) remain elusive. Here, we explore these interactions along an 18,000 km long coastal line of salt marshes, mangroves, and seagrasses in China.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
We examined the potential of environmental DNA (eDNA) for identifying tsunami deposits in the geological record using lake-bottom sediments in the Tohoku region, Japan. The presence of eDNA from marine organisms in a lacustrine event deposit provides very strong evidence that the deposit was formed by an influx of water from the ocean. The diverse DNA assemblage in the deposit formed by the 2011 Tohoku-oki tsunami included DNA of marine origin indicating that eDNA has potential as an identifying proxy for tsunami deposits.
View Article and Find Full Text PDFNature
January 2025
Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
Many known and unknown historical events have remained below detection thresholds of genetic studies because subtle ancestry changes are challenging to reconstruct. Methods based on shared haplotypes and rare variants improve power but are not explicitly temporal and have not been possible to adopt in unbiased ancestry models. Here we develop Twigstats, an approach of time-stratified ancestry analysis that can improve statistical power by an order of magnitude by focusing on coalescences in recent times, while remaining unbiased by population-specific drift.
View Article and Find Full Text PDFSci Rep
December 2024
School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA.
Voltage-gated potassium channels (VGKCs) comprise the largest and most complex families of ion channels. Approximately 70 genes encode VGKC alpha subunits, which assemble into functional tetrameric channel complexes. These subunits can also combine to form heteromeric channels, significantly expanding the potential diversity of VGKCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!