Some Important Metabolites Produced by Lactic Acid Bacteria Originated from Kimchi.

Foods

Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Korea.

Published: September 2021

Lactic acid bacteria (LAB) have been used for various food fermentations for thousands of years. Recently, LAB are receiving increased attention due to their great potential as probiotics for man and animals, and also as cell factories for producing enzymes, antibodies, vitamins, exopolysaccharides, and various feedstocks. LAB are safe organisms with GRAS (generally recognized as safe) status and possess relatively simple metabolic pathways easily subjected to modifications. However, relatively few studies have been carried out on LAB inhabiting plants compared to dairy LAB. Kimchi is a Korean traditional fermented vegetable, and its fermentation is carried out by LAB inhabiting plant raw materials of kimchi. Kimchi represents a model food with low pH and is fermented at low temperatures and in anaerobic environments. LAB have been adjusting to kimchi environments, and produce various metabolites such as bacteriocins, γ-aminobutyric acid, ornithine, exopolysaccharides, mannitol, etc. as products of metabolic efforts to adjust to the environments. The metabolites also contribute to the known health-promoting effects of kimchi. Due to the recent progress in multi-omics technologies, identification of genes and gene products responsible for the synthesis of functional metabolites becomes easier than before. With the aid of tools of metabolic engineering and synthetic biology, it can be envisioned that LAB strains producing valuable metabolites in large quantities will be constructed and used as starters for foods and probiotics for improving human health. Such LAB strains can also be useful as production hosts for value-added products for food, feed, and pharmaceutical industries. In this review, recent findings on the selected metabolites produced by kimchi LAB are discussed, and the potentials of metabolites will be mentioned.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8465840PMC
http://dx.doi.org/10.3390/foods10092148DOI Listing

Publication Analysis

Top Keywords

lab
10
metabolites produced
8
lactic acid
8
acid bacteria
8
carried lab
8
lab inhabiting
8
lab strains
8
metabolites
7
kimchi
7
produced lactic
4

Similar Publications

A conformational switch-controlled RNA sensor based on orthogonal dCas12a for RNA imaging in live cells.

Biosens Bioelectron

January 2025

Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, China; School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832000, China. Electronic address:

RNA imaging technology is essential for understanding the complex RNA regulatory mechanisms and serves as a powerful tool for disease diagnosis. However, conventional RNA imaging methods often require multiple fluorescent tags for the specific labeling of individual targets, complicating both the imaging process and subsequent analysis. Herein, we develop an RNA sensor that integrates a blocked CRISPR RNA (crRNA)-based conformational switch with a controllable CRISPR activation (CRISPRa) system and apply for RNA imaging.

View Article and Find Full Text PDF

Purpose: To present a novel bended-needle drainage system in vitreous cavity lavage (VCL) for postoperative vitreous cavity hemorrhage (POVCH).

Methods: This retrospective case series include all patients with POVCH who received VCL with the bended-needle drainage system at ophthalmology department of Peking Union Medical College Hospital from January 2022 to May 2024. Patients adopted a supine position that allows preparation and draping.

View Article and Find Full Text PDF

Deployable electronics with enhanced fatigue resistance for crumpling and tension.

Sci Adv

January 2025

Multiscale Bio-inspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, South Korea.

Highly packable and deployable electronics offer a variety of advantages in electronics and robotics by facilitating spatial efficiency. These electronics must endure extreme folding during packaging and tension to maintain a rigid structure in the deployment state. Here, we present foldable and robustly deployable electronics inspired by Plantago, characterized by their tolerance to folding and tension due to integration of tough veins within thin leaf.

View Article and Find Full Text PDF

Miniaturized spectral sensing with a tunable optoelectronic interface.

Sci Adv

January 2025

QTF Centre of Excellence, Department of Electronics and Nanoengineering, Aalto University, Espoo FI-00076 Aalto, Finland.

Reconstructive optoelectronic spectroscopy has generated substantial interest in the miniaturization of traditional spectroscopic tools, such as spectrometers. However, most state-of-the-art demonstrations face fundamental limits of rank deficiency in the photoresponse matrix. In this work, we demonstrate a miniaturized spectral sensing system using an electrically tunable compact optoelectronic interface, which generates distinguishable photoresponses from various input spectra, enabling accurate spectral identification with a device footprint of 5 micrometers by 5 micrometers.

View Article and Find Full Text PDF

Exogenous neural stem cells (NSCs) have great potential to reconstitute damage spinal neural circuitry. However, regulating the metabolic reprogramming of NSCs for reliable nerve regeneration has been challenging. This report discusses the biomimetic dextral hydrogel (DH) with right-handed nanofibers that specifically reprograms the lipid metabolism of NSCs, promoting their neural differentiation and rapid regeneration of damaged axons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!