This study focuses on the effect of the mixture (XO/EW) of xylooligosaccharides (XO) and egg white protein (EW) on the physicochemical properties, conformation, and gel-forming ability of myofibrillar proteins (MP) during multiple freeze-thaw (FT) cycles. In our methodology, MP samples added with EW, XO, or XO/EW mixture (1%, /) are prepared, and after multiple FT cycles, the XO or XO/EW-treated samples show significant ( < 0.05) inhibition on the decrease of sulfhydryl content and the increase of carbonyl content of MP. Compared with EW, XO or XO/EW could delay the increase of surface hydrophobicity and the decline of secondary and tertiary structural properties of MP, indicating that XO or XO/EW could more effectively increase the stability of MP conformation. Meanwhile, XO/EW could more effectively reduce the decrease of gel strength and gel water holding capacity, and the increase in the T relaxation time of MP gel, confirming that XO/EW could substantially improve the MP gel-forming ability. Analysis of intermolecular interaction force proves that, compared with EW, XO/EW could reduce the content decrease of ionic and hydrogen bonds in MP gel. Overall, XO/EW could improve the stability of MP functional properties over multiple FT cycles. This study provides a new perspective for the potential commercial application of EW as a low-calorie cryoprotectant in aquatic products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471036PMC
http://dx.doi.org/10.3390/foods10092007DOI Listing

Publication Analysis

Top Keywords

gel-forming ability
12
xylooligosaccharides egg
8
egg white
8
white protein
8
protein physicochemical
8
physicochemical properties
8
properties conformation
8
conformation gel-forming
8
ability myofibrillar
8
multiple freeze-thaw
8

Similar Publications

An injectable in situ-forming hydrogel with self-activating genipin-chitosan (GpCS) cross-linking and an O/Ca self-supplying capability for wound healing and rapid hemostasis.

Carbohydr Polym

March 2025

Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan. Electronic address:

Severe traumatic bleeding and chronic diabetic wounds require rapid hemostasis and multifunctional dressings, which remain particularly challenging, especially for non-compressible trauma and irregular wounds with dysregulated microenvironments. Chitosan (CS) can be easily cross-linked with genipin to form GpCS hydrogels. However, developing injectable GpCS hydrogels for biomedical applications faces challenges, particularly in enhancing rapid gel formation and optimizing physical properties.

View Article and Find Full Text PDF

In this study, a novel adsorbent called Ca@SP was developed by immobilizing microalgae protein (Spirulina platensis, SP) in an alginate matrix for enhanced Pb²⁺ removal from aqueous solutions. Synthesized via in situ crosslinking, Ca@SP leverages the synergistic effects of alginate's gel-forming ability and SP's N-rich biomass. Characterization of Ca@SP revealed a green spherical hydrogel with a BET specific surface area of 159.

View Article and Find Full Text PDF

The ultrashort peptide -fluorenylmethoxycarbonyl-phenylalanyl-phenylalanine (FmocFF) has been largely investigated due to its ability to self-assemble into fibrils (100 nm-μm scale) that can form a sample-spanning gel network. The initiation of the gelation process requires either a solvent switch (water added to dimethyl sulfoxide) or a pH-switch (alkaline to neutral) protocol, both of which ensure the solubility of the peptide as a necessary step preceding gelation. While the respective gel phases are well understood in structural and material characteristics terms the pregelation conditions are known to a lesser extent.

View Article and Find Full Text PDF

Skin injuries, such as burns, can result in an open wound that can lead to the deterioration of the skin, which acts as a protective barrier against external agents, and can cause serious health problems. Pectin, a plant-derived polysaccharide, is a suitable candidate for wound care due to its gel-forming ability and biocompatibility. Pectin absorbs wound exudates to form a soft gel and is known for its strong anti-inflammatory efects.

View Article and Find Full Text PDF

The demand for natural-based formulations in chronic wound care has increased, driven by the need for biocompatible, safe, and effective treatments. Natural polysaccharide-based emulsions enriched with vegetable oils present promising benefits for skin repair, offering structural support and protective barriers suitable for sensitive wound environments. This study aimed to develop and evaluate semisolid polysaccharide-based emulsions for wound healing, incorporating avocado () and blackcurrant () oils (AO and BO, respectively).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!