The novel coronavirus (nCoV-2019) is responsible for the acute respiratory disease in humans known as COVID-19. This infection was found in the Wuhan and Hubei provinces of China in the month of December 2019, after which it spread all over the world. By March, 2020, this epidemic had spread to about 117 countries and its different variants continue to disturb human life all over the world, causing great damage to the economy. Through this paper, we have attempted to identify and predict the novel coronavirus from influenza-A viral cases and healthy patients without infection through applying deep learning technology over patient pulmonary computed tomography (CT) images, as well as by the model that has been evaluated. The CT image data used under this method has been collected from various radiopedia data from online sources with a total of 548 CT images, of which 232 are from 12 patients infected with COVID-19, 186 from 17 patients with influenza A virus, and 130 are from 15 healthy candidates without infection. From the results of examination of the reference data determined from the point of view of CT imaging cases in general, the accuracy of the proposed model is 79.39%. Thus, this deep learning model will help in establishing early screening of COVID-19 patients and thus prove to be an analytically robust method for clinical experts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466782PMC
http://dx.doi.org/10.3390/diagnostics11091735DOI Listing

Publication Analysis

Top Keywords

deep learning
12
patient pulmonary
8
novel coronavirus
8
learning based
4
based approach
4
approach patient
4
pulmonary image
4
image screening
4
screening predict
4
predict coronavirus
4

Similar Publications

Traumatic injury remains a leading cause of death worldwide, with traumatic bleeding being one of its most critical and fatal consequences. The use of whole-body computed tomography (WBCT) in trauma management has rapidly expanded. However, interpreting WBCT images within the limited time available before treatment is particularly challenging for acute care physicians.

View Article and Find Full Text PDF

In human activity-recognition scenarios, including head and entire body pose and orientations, recognizing the pose and direction of a pedestrian is considered a complex problem. A person may be traveling in one sideway while focusing his attention on another side. It is occasionally desirable to analyze such orientation estimates using computer-vision tools for automated analysis of pedestrian behavior and intention.

View Article and Find Full Text PDF

Hypertension is a critical risk factor and cause of mortality in cardiovascular diseases, and it remains a global public health issue. Therefore, understanding its mechanisms is essential for treating and preventing hypertension. Gene expression data is an important source for obtaining hypertension biomarkers.

View Article and Find Full Text PDF

Maize quality detection based on MConv-SwinT high-precision model.

PLoS One

January 2025

Engineering Research Center of Hydrogen Energy Equipment& Safety Detection, Universities of Shaanxi Province, Xijing University, Xi'an, China.

The traditional method of corn quality detection relies heavily on the subjective judgment of inspectors and suffers from a high error rate. To address these issues, this study employs the Swin Transformer as an enhanced base model, integrating machine vision and deep learning techniques for corn quality assessment. Initially, images of high-quality, moldy, and broken corn were collected.

View Article and Find Full Text PDF

Motivation: In silico functional annotation of proteins is crucial to narrowing the sequencing-accelerated gap in our understanding of protein activities. Numerous function annotation methods exist, and their ranks have been growing, particularly so with the recent deep learning-based developments. However, it is unclear if these tools are truly predictive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!