A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Personalized Medical Decision Support System Based on Explainable Machine Learning Algorithms and ECC Features: Data from the Real World. | LitMetric

Artificial intelligence can help physicians improve the accuracy of breast cancer diagnosis. However, the effectiveness of AI applications is limited by doctors' adoption of the results recommended by the personalized medical decision support system. Our primary purpose is to study the impact of external case characteristics (ECC) on the effectiveness of the personalized medical decision support system for breast cancer assisted diagnosis (PMDSS-BCAD) in making accurate recommendations. Therefore, we designed a novel comprehensive framework for case-based reasoning (CBR) that takes the impact of external features of cases into account, made use of the naive Bayes and k-nearest neighbor (KNN) algorithms (CBR-ECC), and developed a PMDSS-BCAD system by using the CBR-ECC model and external features as system components. Under the new case-based reasoning framework, the accuracy of the combined model of naive Bayes and KNN with an optimal K value of 2 is 99.40%. Moreover, in a real hospital scenario, users rated the PMDSS-BCAD system, which takes into account the external characteristics of the case, better than the original personalized system. These results suggest that PMDSS-BCD can not only provide doctors with more personalized and accurate results for auxiliary diagnosis, but also improve doctors' trust in the results, so as to encourage doctors to adopt the results recommended by the personalized system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471808PMC
http://dx.doi.org/10.3390/diagnostics11091677DOI Listing

Publication Analysis

Top Keywords

personalized medical
12
medical decision
12
decision support
12
support system
12
system
8
breast cancer
8
recommended personalized
8
impact external
8
case-based reasoning
8
external features
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!