Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Artificial intelligence can help physicians improve the accuracy of breast cancer diagnosis. However, the effectiveness of AI applications is limited by doctors' adoption of the results recommended by the personalized medical decision support system. Our primary purpose is to study the impact of external case characteristics (ECC) on the effectiveness of the personalized medical decision support system for breast cancer assisted diagnosis (PMDSS-BCAD) in making accurate recommendations. Therefore, we designed a novel comprehensive framework for case-based reasoning (CBR) that takes the impact of external features of cases into account, made use of the naive Bayes and k-nearest neighbor (KNN) algorithms (CBR-ECC), and developed a PMDSS-BCAD system by using the CBR-ECC model and external features as system components. Under the new case-based reasoning framework, the accuracy of the combined model of naive Bayes and KNN with an optimal K value of 2 is 99.40%. Moreover, in a real hospital scenario, users rated the PMDSS-BCAD system, which takes into account the external characteristics of the case, better than the original personalized system. These results suggest that PMDSS-BCD can not only provide doctors with more personalized and accurate results for auxiliary diagnosis, but also improve doctors' trust in the results, so as to encourage doctors to adopt the results recommended by the personalized system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471808 | PMC |
http://dx.doi.org/10.3390/diagnostics11091677 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!