Pulsars, especially X-ray pulsars detectable for small-size detectors, are highly accurate natural clocks suggesting potential applications such as interplanetary navigation control. Due to various complex cosmic background noise, the original pulsar signals, namely photon sequences, observed by detectors have low signal-to-noise ratios (SNRs) that obstruct the practical uses. This paper presents the pulsar denoising strategy developed based on the variational mode decomposition (VMD) approach. It is actually the initial work of our interplanetary navigation control research. The original pulsar signals are decomposed into intrinsic mode functions (IMFs) via VMD, by which the Gaussian noise contaminating the pulsar signals can be attenuated because of the filtering effect during signal decomposition and reconstruction. Comparison experiments based on both simulation and HEASARC-archived X-ray pulsar signals are carried out to validate the effectiveness of the proposed pulsar denoising strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8465729 | PMC |
http://dx.doi.org/10.3390/e23091181 | DOI Listing |
Nature
January 2025
Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada.
Sci Rep
December 2024
Department of Physics, University of Trento, Via Sommarive 14, 38123, Povo (TN), Italy.
It has been argued that realistic models of (singularity-free) black holes (BHs) embedded within an expanding Universe are coupled to the large-scale cosmological dynamics, with striking consequences, including pure cosmological growth of BH masses. In this pilot study, we examine the consequences of this growth for the stochastic gravitational wave background (SGWB) produced by inspiraling supermassive cosmologically coupled BHs. We show that the predicted SGWB amplitude is enhanced relative to the standard uncoupled case, while maintaining the [Formula: see text] frequency scaling of the spectral energy density.
View Article and Find Full Text PDFFront Oncol
December 2024
Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
PULSAR (personalized, ultra-fractionated stereotactic adaptive radiotherapy) is the adaptation of stereotactic ablative radiotherapy towards personalized cancer management. It has potential to harness the synergy between radiation therapy and immunotherapy, such as immune checkpoint inhibitors to amplify the anti-tumor immune response. For the first time, we applied a transformer-based attention mechanism to investigate the underlying interactions between combined PULSAR and PD-L1 blockade immunotherapy, based on the preliminary experimental results of a murine cancer model (Lewis Lung Carcinoma, LLC).
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Via Marzolo 8, 35131 Padova, Italy.
Slow first-order phase transitions generate large inhomogeneities that can lead to the formation of primordial black holes. We show that the gravitational wave spectrum then consists of a primary component sourced by bubble collisions and a secondary one induced by large perturbations. The latter gives the dominant peak if β/H_{0}<12, impacting, in particular, the interpretation of the recent pulsar timing array data.
View Article and Find Full Text PDFJ Heart Lung Transplant
December 2024
Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.
Background: This analysis examined the effects of the activin signaling inhibitor, sotatercept, in pulmonary arterial hypertension (PAH) subgroups stratified by baseline cardiac index (CI).
Methods: Pooled data from PULSAR (N = 106; NCT03496207) and STELLAR (N = 323; NCT04576988) were analyzed using 2 different CI thresholds, <2.0 and ≥2.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!