Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In theoretical biology, we are often interested in random dynamical systems-like the brain-that appear to model their environments. This can be formalized by appealing to the existence of a (possibly non-equilibrium) steady state, whose density preserves a conditional independence between a biological entity and its surroundings. From this perspective, the conditioning set, or Markov blanket, induces a form of vicarious synchrony between creature and world-as if one were modelling the other. However, this results in an apparent paradox. If all conditional dependencies between a system and its surroundings depend upon the blanket, how do we account for the mnemonic capacity of living systems? It might appear that any shared dependence upon past blanket states violates the independence condition, as the variables on either side of the blanket now share information not available from the current blanket state. This paper aims to resolve this paradox, and to demonstrate that conditional independence does not preclude memory. Our argument rests upon drawing a distinction between the dependencies implied by a steady state density, and the density dynamics of the system conditioned upon its configuration at a previous time. The interesting question then becomes: What determines the length of time required for a stochastic system to 'forget' its initial conditions? We explore this question for an example system, whose steady state density possesses a Markov blanket, through simple numerical analyses. We conclude with a discussion of the relevance for memory in cognitive systems like us.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469145 | PMC |
http://dx.doi.org/10.3390/e23091105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!