Probiotics and Polysaccharides Improve Growth Performance via Promoting Intestinal Nutrient Utilization and Enhancing Immune Function of Weaned Pigs.

Animals (Basel)

Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.

Published: September 2021

The experiment aimed to investigate the effects of probiotics and polysaccharides on the growth performance, nutrients digestibility, and immune function of weaned pigs. One hundred and twenty weaned pigs (about 7 kg BW, 23 ± 2 d) were allotted to five dietary treatments (CON: antibiotics-free basal diet; ANT: CON + antibiotics; PRO: CON + probiotics; ABPS: CON + polysaccharides; P-ABPS: PRO + ABPS) for a 28-day trial. Compared with CON, pigs in ANT, PRO, ABPS, and P-ABPS had greater ( < 0.05) ADG, ATTD of CP and GE, serum ALB, IgA and IL-2, duodenal intraepithelial lymphocyte, ileal VH and jejunal mucosa sIgA, but lower ( < 0.05) fecal scores, serum BUN, and IL-1β. Meanwhile, ANT, PRO, ABPS, and P-ABPS exhibited similar beneficial roles on growth performance, nutrients digestibility, serum parameters, and immune function. Interestingly, P-ABPS effects were similar to those obtained with ANT rather than with PRO or ABPS. In conclusion, Dietary PRO or ABPS used alone or in combination (P-ABPS), the combination augmenting the positive effect more than the independent supplement, could improve piglets' growth performance via promoting intestinal nutrient digestion and absorption and enhancing immune function, indicating it had the potential to act as an alternative to in-feed antibiotics used in piglet diets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467685PMC
http://dx.doi.org/10.3390/ani11092617DOI Listing

Publication Analysis

Top Keywords

pro abps
20
growth performance
16
immune function
16
weaned pigs
12
ant pro
12
probiotics polysaccharides
8
performance promoting
8
promoting intestinal
8
intestinal nutrient
8
enhancing immune
8

Similar Publications

Cathepsin-K (CTSK) is an osteoclast-secreted cysteine protease that efficiently cleaves extracellular matrices and promotes bone homeostasis and remodeling, making it an excellent therapeutic target. Detection of CTSK activity in complex biological samples using tailored tools such as activity-based probes (ABPs) will aid tremendously in drug development. Here, potent and selective CTSK probes are designed and created, comparing irreversible and reversible covalent ABPs with improved recognition components and electrophiles.

View Article and Find Full Text PDF

Antler bone calcium (AB-Ca) and bioactive peptides (ABPs) were extracted from antler bones () to maximize their value. In this study, 0.14 g calcium was obtained from 1 g antler bone.

View Article and Find Full Text PDF

Proteases are important enzymes in health and disease. Their activities are regulated at multiple levels. In fact, proteases are synthesized as inactive proenzymes (zymogens) that are activated by proteolytic removal of their pro-peptide sequence and can remain active or their activity can be attenuated by complex formation with specific endogenous inhibitors or by limited proteolysis or degradation.

View Article and Find Full Text PDF

A ligand selection strategy to customize small molecule probes for activity-based protein profiling (LS-ABPP).

Methods Enzymol

April 2022

Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Vienna, Austria. Electronic address:

Activity-based probes (ABPs) are the key components of activity-based protein profiling (ABPP). However, designing a probe that shows target-specific as well as site-selective binding can be a challenging and time-consuming task, often requiring complex synthetic procedures to provide a selection of probes from which to choose the ideal one. In this chapter, we present a ligand selection (LS) approach that allows us to rapidly diversify probe molecules in order to meet the steric and electronic demands of the binding site of any target enzyme.

View Article and Find Full Text PDF

Probiotics and Polysaccharides Improve Growth Performance via Promoting Intestinal Nutrient Utilization and Enhancing Immune Function of Weaned Pigs.

Animals (Basel)

September 2021

Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.

The experiment aimed to investigate the effects of probiotics and polysaccharides on the growth performance, nutrients digestibility, and immune function of weaned pigs. One hundred and twenty weaned pigs (about 7 kg BW, 23 ± 2 d) were allotted to five dietary treatments (CON: antibiotics-free basal diet; ANT: CON + antibiotics; PRO: CON + probiotics; ABPS: CON + polysaccharides; P-ABPS: PRO + ABPS) for a 28-day trial. Compared with CON, pigs in ANT, PRO, ABPS, and P-ABPS had greater ( < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!