Alternative splicing, a driver of posttranscriptional variance, differs from canonical splicing by arranging the introns and exons of an immature pre-mRNA transcript in a multitude of different ways. Although alternative splicing was discovered almost half a century ago, estimates of the proportion of genes that undergo alternative splicing have risen drastically over the last two decades. Deep sequencing methods and novel bioinformatic algorithms have led to new insights into the prevalence of spliced variants, tissue-specific splicing patterns and the significance of alternative splicing in development and disease. Thus far, the role of alternative splicing has been uncovered in areas ranging from heart development, the response to myocardial infarction to cardiac structural disease. Circular RNAs, a product of alternative back-splicing, were initially discovered in 1976, but landmark publications have only recently identified their regulatory role, tissue-specific expression, and transcriptomic abundance, spurring a renewed interest in the topic. The aim of this review is to provide a brief insight into some of the available findings on the role of alternative splicing in cardiovascular disease, with a focus on atherosclerosis, myocardial infarction, heart failure, dilated cardiomyopathy and circular RNAs in myocardial infarction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469243PMC
http://dx.doi.org/10.3390/genes12091457DOI Listing

Publication Analysis

Top Keywords

alternative splicing
28
myocardial infarction
12
alternative
8
splicing cardiovascular
8
splicing
8
role alternative
8
circular rnas
8
cardiovascular disease-a
4
disease-a survey
4
survey findings
4

Similar Publications

Alternative splicing is essential for the generation of various protein isoforms that are involved in cell differentiation and tissue development. In addition to internal coding exons, alternative splicing affects the exons with translation initiation codons; however, little is known about these exons. Here, we performed a systematic classification of human alternative exons using coding information.

View Article and Find Full Text PDF

SRPKs Homolog Dsk1 Regulates Homologous Recombination Repair in Schizosaccharomyces pombe.

Genes Cells

January 2025

Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, Nanjing, China.

Serine-arginine protein kinases (SRPKs) play important roles in diverse biological processes such as alternative splicing and cell cycle. However, the functions of SRPKs in DNA damage response remain unclear. Here we characterized the function of SRPKs homolog Dsk1 in regulating DNA repair in the fission yeast Schizosaccharomyces pombe.

View Article and Find Full Text PDF

Lung cancer is one of the most frequently diagnosed cancers in the US. African-American (AA) men are more likely to develop lung cancer with higher incidence and mortality rates than European-American (EA) men. Herein, we report high-confidence alternative splicing (AS) events from high-throughput, high-depth total RNA sequencing of lung tumors and non-tumor adjacent tissues (NATs) in two independent cohorts of patients with adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC).

View Article and Find Full Text PDF

Genomic variants causing abnormal splicing play important roles in genetic disorders and cancer development. Among them, variants that cause the formation of novel splice-sites (splice-site creating variants, SSCVs) are particularly difficult to identify and often overlooked in genomic studies. Additionally, these SSCVs are frequently considered promising candidates for treatment with splice-switching antisense oligonucleotides (ASOs).

View Article and Find Full Text PDF

Li-Fraumeni syndrome: a germline splice variant reveals a novel physiological alternative transcript.

J Med Genet

January 2025

Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France

Background: Li-Fraumeni syndrome (LFS) predisposes individuals to a wide range of cancers from childhood onwards, underscoring the crucial need for accurate interpretation of germline variants for optimal clinical management of patients and families. Several unclassified variants, particularly those potentially affecting splicing, require specialised testing. One such example is the NM_000546.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!