Hydroxytyrosol (HT) is the component primarily responsible for the neuroprotective effect of extra virgin olive oil (EVOO). However, it is less effective on its own than the demonstrated neuroprotective effect of EVOO, and for this reason, it can be postulated that there is an interaction between several of the polyphenols of EVOO. The objective of the study was to assess the possible interaction of four EVOO polyphenols (HT, tyrosol, dihydroxyphenylglycol, and oleocanthal) in an experimental model of hypoxia-reoxygenation in rat brain slices. The lactate dehydrogenase (LDH) efflux, lipid peroxidation, and peroxynitrite production were determined as measures of cell death, oxidative stress, and nitrosative stress, respectively. First, the polyphenols were incubated with the brain slices in the same proportions that exist in EVOO, comparing their effects with those of HT. In all cases, the cytoprotective and antioxidant effects of the combination were greater than those of HT alone. Second, we calculated the concentration-effect curves for HT in the absence or presence of each polyphenol. Tyrosol did not significantly modify any of the variables inhibited by HT. Dihydroxyphenylglycol only increased the cytoprotective effect of HT at 10 µM, while it increased its antioxidant effect at 50 and 100 µM and its inhibitory effect on peroxynitrite formation at all the concentrations tested. Oleocanthal increased the cytoprotective and antioxidant effects of HT but did not modify its inhibitory effect on nitrosative stress. The results of this study show that the EVOO polyphenols DHPG and OLC increase the cytoprotective effect of HT in an experimental model of hypoxia-reoxygenation in rat brain slices, mainly due to a possibly synergistic effect on HT's antioxidant action. These results could explain the greater neuroprotective effect of EVOO than of the polyphenols alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471209PMC
http://dx.doi.org/10.3390/brainsci11091133DOI Listing

Publication Analysis

Top Keywords

model hypoxia-reoxygenation
12
hypoxia-reoxygenation rat
12
rat brain
12
evoo polyphenols
12
brain slices
12
extra virgin
8
neuroprotective evoo
8
experimental model
8
nitrosative stress
8
cytoprotective antioxidant
8

Similar Publications

FTO Alleviates Hepatic Ischemia-Reperfusion Injury by Regulating Apoptosis and Autophagy.

Gastroenterol Res Pract

January 2025

Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Despite N-methyladenosine (mA) being closely involved in various pathophysiological processes, its potential role in liver injury is largely unknown. We designed the current research to study the potential role of fat mass and obesity-associated protein (FTO), an mA demethylase, on hepatic ischemia-reperfusion injury (IRI). Wild-type mice injected with an adeno-associated virus carrying fat mass and obesity-associated protein (AAV-FTO) or adeno-associated virus carrying green fluorescent protein (GFP) (AAV-GFP) were subjected to a hepatic IRI model in vivo.

View Article and Find Full Text PDF

[Mechanism of ginsenoside Rg_1 in regulating autophagy through miR-155/Notch1/Hes1 pathway to attenuate hypoxia/reoxygenation injury in HL-1 cells].

Zhongguo Zhong Yao Za Zhi

December 2024

School of Traditional Chinese Medicine, Binzhou Medical College Yantai 264003, China Institute of Basic Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences Beijing 100091, China.

This article explored the specific mechanism by which ginsenoside Rg_1 regulates cellular autophagy to attenuate hypoxia/reoxygenation(H/R) injury in HL-1 cardiomyocytes through the microRNA155(miR-155)/neurogenic gene Notch homologous protein 1(Notch1)/hairy and enhancer of split 1(Hes1) pathway. An HL-1 cell model with H/R injury was constructed, and ginsenoside Rg_1 and/or Notch1 inhibitor DAPT and miR-155 mimics were used to treat cells. Cell counting kit(CCK)-8 was used to detect the relative viability of HL-1 cells with H/R injury.

View Article and Find Full Text PDF

Ischemia reperfusion-induced myocardial injury is a prominent pathological feature in patients with coronary artery disease, contributing to significant mortality and morbidity rates. Mangiferin (MGF), the main active ingredient extracted from Anemarrhena asphodeloides Bge, has anti-inflammatory, anti-oxidation, anti-diabetes, and anti-tumor effects. The present study confirmed that the GAS6/Axl pathway was identified as a promising novel target for the treatment of myocardial ischemia reperfusion (IR) injury.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid decline in renal function. Renal ischemia-reperfusion injury (RIRI) is one of the main causes of AKI with the underlying mechanism incompletely clarified. The liver X receptors (LXRs), including LXRα and LXRβ, are members of the nuclear receptor superfamily.

View Article and Find Full Text PDF

Myosin light chain 9 mediates graft fibrosis after pediatric liver transplantation through TLR4/MYD88/NF-κB signaling.

Cell Mol Gastroenterol Hepatol

January 2025

Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin, China; Tianjin Key Laboratory of Organ Transplantation, Tianjin First Central Hospital, Tianjin, China. Electronic address:

Background & Aims: The incidence of graft fibrosis is elevated following pediatric liver transplantation (pLT) and is influenced by cold ischemic time (CIT). Myosin light chain 9 (MYL9), a member of the myosin family, could act on hepatic stellate cells (HSCs) and induce a transition to active phase. We hypothesized that cold ischemic injury could stimulate MYL9 expression and lead to graft fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!