AI Article Synopsis

Article Abstract

Currently, assays for rapid therapeutic drug monitoring (TDM) of β-lactam antibiotics in blood, which might be of benefit in optimizing doses for treatment of critically ill patients, remain challenging. Previously, we developed an assay for determining the penicillin-class antibiotics in blood using a thermometric penicillinase biosensor. The assay eliminates sample pretreatment, which makes it possible to perform semicontinuous penicillin determinations in blood. However, penicillinase has a narrow substrate specificity, which makes it unsuitable for detecting other classes of β-lactam antibiotics, such as cephalosporins and carbapenems. In order to assay these classes of clinically useful antibiotics, a novel biosensor was developed using New Delhi metallo-β-lactamase-1 (NDM-1) as the biological recognition layer. NDM-1 has a broad specificity range and is capable of hydrolyzing all classes of β-lactam antibiotics in high efficacy with the exception of monobactams. In this study, we demonstrated that the NDM-1 biosensor was able to quantify multiple classes of β-lactam antibiotics in blood plasma at concentrations ranging from 6.25 mg/L or 12.5 mg/L to 200 mg/L, which covered the therapeutic concentration windows of the tested antibiotics used to treat critically ill patients. The detection of ceftazidime and meropenem was not affected by the presence of the β-lactamase inhibitors avibactam and vaborbactam, respectively. Furthermore, both free and protein-bound β-lactams present in the antibiotic-spiked plasma samples were detected by the NDM-1 biosensor. These results indicated that the NDM-1 biosensor is a promising technique for rapid TDM of total β-lactam antibiotics present in the blood of critically ill patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468087PMC
http://dx.doi.org/10.3390/antibiotics10091110DOI Listing

Publication Analysis

Top Keywords

β-lactam antibiotics
24
antibiotics blood
20
classes β-lactam
16
critically ill
12
ill patients
12
ndm-1 biosensor
12
antibiotics
9
multiple classes
8
β-lactam
6
blood
6

Similar Publications

Macrolide resistance due to (55).

Microbiol Spectr

January 2025

Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, Saskatchewan, Canada.

Unlabelled: Antimicrobial resistance (AMR) is a global threat. The identification and characterization of novel resistance genes is integral to AMR surveillance. The (55) gene was originally identified through whole genome sequencing of macrolide-resistant strains of .

View Article and Find Full Text PDF

High-quality draft genomes of six subspecies strains from Cambodian poultry marketplaces were sequenced. The strains were identified as Corvallis-, Monschaui-, and Kentucky-serovars. The fluoroquinolone resistance gene, was found in three strains in different Cambodian provinces.

View Article and Find Full Text PDF

Mycoplasma (Class: Mollicutes) contamination in cell cultures is a universal concern for research laboratories. Some estimates report contamination in up to 35% of continuous cell lines. Various commercial antibiotic treatments can successfully decontaminate clean cell lines ; however, decontamination of bacterial cultures remains challenging.

View Article and Find Full Text PDF

Unlabelled: a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in .

View Article and Find Full Text PDF

Treatment with antibiotics is a major risk factor for infection, likely due to depletion of the gastrointestinal microbiota. Two microbiota-mediated mechanisms thought to limit colonization include the conversion of conjugated primary bile salts into secondary bile salts toxic to growth and competition between the microbiota and for limiting nutrients. Using a continuous flow model that simulates the nutrient conditions of the distal colon, we investigated how treatment with 6 clinically used antibiotics influenced susceptibility to infection in 12 different microbial communities cultivated from healthy individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!