Irrational and inappropriate use of antibiotics in commercial chicken and aquaculture industries can accelerate the antibiotic resistance process in humans and animals. In Bangladesh, the growing commercial chicken and aquaculture industries are playing significantly important roles in the food value chain. It is necessary to know the antibiotic usage practices and antibiotic resistance in food animal production to design rational policies, guidelines, and interventions. We conducted a narrative review to understand the level of antibiotic usage and resistance in food animal production in Bangladesh. Information about antibiotic usage in different food animal production systems, including commercial chickens and aquaculture in Bangladesh is inadequate. Only a few small-scale studies reported that the majority (up to 100%) of the broiler and layer chicken farms used antibiotics for treating and preventing diseases. However, numerous studies reported antibiotic-resistant bacteria of public health importance in commercial chicken, fish, livestock, and animal origin food. The isolates from different pathogenic bacteria were found resistant against multiple antibiotics, including quinolones, the third or fourth generation of cephalosporins, and polymyxins. Veterinary practitioners empirically treat animals with antibiotics based on presumptive diagnosis due to inadequate microbial diagnostic facilities in Bangladesh. Intensive training is helpful to raise awareness among farmers, feed dealers, and drug sellers on good farming practices, standard biosecurity practices, personal hygiene, and the prudent use of antibiotics. Urgently, the Government of Bangladesh should develop and implement necessary guidelines to mitigate irrational use of antibiotics in food animals using a multi-sectoral One Health approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467341PMC
http://dx.doi.org/10.3390/antibiotics10091032DOI Listing

Publication Analysis

Top Keywords

antibiotic usage
16
food animal
16
animal production
16
resistance food
12
commercial chicken
12
usage resistance
8
chicken aquaculture
8
aquaculture industries
8
antibiotic resistance
8
studies reported
8

Similar Publications

Urinary tract infections (UTIs) often prompt empiric outpatient antibiotic prescriptions, risking mismatches. This study evaluates the impact of "UTI Smart-Set" (UTIS), an AI-driven decision-support tool, on prescribing patterns and mismatches in a large outpatient organization. UTIS integrates machine learning forecasts of antibiotic resistance, patient data, and guidelines into a user-friendly order set for UTI management.

View Article and Find Full Text PDF

Unlabelled: Antibiotic resistance is frequently observed shortly after the clinical introduction of an antibiotic. Whether and how frequently that resistance occurred before the introduction is harder to determine, as isolates could not have been tested for resistance before an antibiotic was discovered. Historical collections, like the British National Collection of Type Cultures (NCTC), stretching back to 1885, provide a window into this history.

View Article and Find Full Text PDF

Introduction: Surveillance of antibiotic use is crucial for identifying targets for antibiotic stewardship programs (ASPs), particularly in pediatric populations within countries like Pakistan, where antimicrobial resistance (AMR) is escalating. This point prevalence survey (PPS) seeks to assess the patterns of antibiotic use in pediatric patients across Punjab, Pakistan, employing the WHO AWaRe classification to pinpoint targets for intervention and encourage rational antibiotic usage.

Methods: A PPS was conducted across 23 pediatric wards of 14 hospitals in the Punjab Province of Pakistan using the standardized Global-PPS methodology developed by the University of Antwerp.

View Article and Find Full Text PDF

Environmental antibiotic residues (EARs) and antibiotic-resistant bacteria (ARB) are known to contribute to global antimicrobial resistance (AMR). This study investigated EAR levels in selected wells, river, abattoir wastewater, bottled water and sachet water from Ede, Nigeria. Ecological risk quotient (RQ) and health risk (Hazard quotient) of the levels of these EARs, ARB and multidrug-resistant bacteria (MDR) with their antibiotic resistance were calculated.

View Article and Find Full Text PDF

Background: Wastewater systems are usually considered antibiotic resistance hubs connecting human society and the natural environment. Antibiotic usage can increase the abundance of both ARGs (antibiotic resistance genes) and MGEs (mobile gene elements). Understanding the transcriptomic profiles of ARGs and MGEs remains a major research goal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!