Garlic has long been used medicinally for many diseases, including cancer. One of the active garlic components is diallyl sulfide (DAS), which prevents carcinogenesis and reduces the incidence rate of several cancers. In this study, non-cancerous MCF-10A cells were used as a model to investigate the effect of DAS on Benzo (a)pyrene (BaP)-induced cellular carcinogenesis. The cells were evaluated based on changes in proliferation, cell cycle arrest, the formation of peroxides, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, the generation of DNA strand breaks, and DNA Polymerase β (Pol β) expression. The results obtained indicate that when co-treated with BaP, DAS inhibited BaP-induced cell proliferation ( < 0.05) to levels similar to the negative control. BaP treatment results in a two-fold increase in the accumulation of cells in the G2/M-phase of the cell cycle, which is restored to baseline levels, similar to untreated cells and vehicle-treated cells, when pretreated with 6 μM and 60 μM DAS, respectively. Co-treatment with DAS (60 μM and 600 μM) inhibited BaP-induced reactive oxygen species (ROS) formation by 132% and 133%, respectively, as determined by the accumulation of HO in the extracellular medium and an increase in 8-OHdG levels of treated cells. All DAS concentrations inhibited BaP-induced DNA strand breaks through co-treatment and pre-treatment methods at all time points evaluated. Co-Treatment with 60 μM DAS increased DNA Pol β expression in response to BaP-induced lipid peroxidation and oxidative DNA damage. These results indicate that DAS effectively inhibited BaP-induced cell proliferation, cell cycle transitions, ROS, and DNA damage in an MCF-10A cell line. These results provide more experimental evidence for garlic's antitumor abilities and corroborate many epidemiological studies regarding the association between the increased intake of garlic and the reduced risk of several types of cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8470778PMC
http://dx.doi.org/10.3390/biom11091313DOI Listing

Publication Analysis

Top Keywords

inhibited bap-induced
16
dna strand
12
strand breaks
12
cell cycle
12
diallyl sulfide
8
ros formation
8
das
8
proliferation cell
8
8-ohdg levels
8
pol expression
8

Similar Publications

Reproductive toxicity and molecular mechanisms of benzo[a]pyrene exposure on ovary, testis, and brood pouch of sex-role-reversed seahorses (Hippocampus erectus).

Environ Pollut

December 2024

School of Fisheries, Ludong University, Yantai, 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, 264025, China. Electronic address:

As a flagship taxa for marine ecosystems, seahorses possess a unique reproductive strategy of "male pregnancy". They are severely threatened by marine petroleum-based pollution but the molecular mechanism involved remains unclear. We evaluated the toxic effects and mechanisms of sub-acute exposure to benzo[a]pyrene (BaP), a representative polycyclic aromatic hydrocarbon (PAH), at three environmental related dosages (0.

View Article and Find Full Text PDF

Introduction: Benzo[a]pyrene (BaP) is a toxic polycyclic aromatic hydrocarbon known as an exogenous AhR ligand. This study investigates the role of BaP in inducing immune checkpoint expression in lung adenocarcinoma (LUAD) and the underlying mechanisms involving the aryl hydrocarbon receptor (AhR) and tryptophan (Trp) metabolism.

Methods: We assessed the expression of immune checkpoint molecules, including PD-L1 and ICOSL, in lung epithelial cell lines (BEAS-2B and H1975) exposed to BaP.

View Article and Find Full Text PDF

Benzo(a)pyrene promotes autophagy to impair endometrial decidualization via inhibiting CXCL12/CXCR4 axis.

Chem Biol Interact

January 2025

Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing, PR China; Joint International Research Laboratory of Reproduction & Development, Ministry of Education, Chongqing Medical University, Chongqing, PR China. Electronic address:

Benzo(a)pyrene (BaP), a pervasive environmental pollutant with endocrine-disrupting properties, has been associated with detrimental effects on pregnancy. During early pregnancy, the endometrial decidualization process is critical for embryo implantation. Abnormal decidualization can lead to implantation failure, aberrant placental formation, and pregnancy loss.

View Article and Find Full Text PDF

Integrated network toxicology, transcriptomics and gut microbiomics reveals hepatotoxicity mechanism induced by benzo[a]pyrene exposure in mice.

Toxicol Appl Pharmacol

October 2024

Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. Electronic address:

Benzo[a]pyrene (BaP) is a ubiquitous environmental pollutant posing various toxicity effects on organisms. Previous studies demonstrated that BaP could induce hepatotoxicity, while the underlying mechanism remains incompletely elucidated. In this study, a comprehensive strategy including network toxicology, transcriptomics and gut microbiomics was applied to investigate the hepatotoxicity and the associated mechanism of BaP exposure in mice.

View Article and Find Full Text PDF

PD-L2 mediates tobacco smoking-induced recruitment of regulatory T cells via the RGMB/NFκB/CCL20 cascade.

Cell Biol Toxicol

July 2024

State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

Programmed cell death ligand 2 (PD-L2), a ligand for the receptor programmed cell death 1 (PD-1), has an identity of 34% with its twin ligand PD-L1 and exhibits higher binding affinity with PD-1 than PD-L1. However, the role of PD-L2 in non-small cell lung cancer (NSCLC) progression, especially tobacco-induced cancer progression, has not been fully understood. Here, we found that PD-L2 promoted tumor growth in murine models with recruitment of regulatory T cells (Tregs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!