Inherited retinal degenerations (IRD) affecting either photoreceptors or pigment epithelial cells cause progressive visual loss and severe disability, up to complete blindness. Retinal organoids (ROs) technologies opened up the development of human inducible pluripotent stem cells (hiPSC) for disease modeling and replacement therapies. However, hiPSC-derived ROs applications to IRD presently display limited maturation and functionality, with most photoreceptors lacking well-developed outer segments (OS) and light responsiveness comparable to their adult retinal counterparts. In this review, we address for the first time the microenvironment where OS mature, i.e., the subretinal space (SRS), and discuss SRS role in photoreceptors metabolic reprogramming required for OS generation. We also address bioengineering issues to improve culture systems proficiency to promote OS maturation in hiPSC-derived ROs. This issue is crucial, as satisfying the demanding metabolic needs of photoreceptors may unleash hiPSC-derived ROs full potential for disease modeling, drug development, and replacement therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471616 | PMC |
http://dx.doi.org/10.3390/cells10092489 | DOI Listing |
Curr Protoc
January 2025
Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana.
Human induced pluripotent stem cell (hiPSC)-based disease modeling can be successfully recapitulated to mimic disease characteristics across various human pathologies. Glaucoma, a progressive optic neuropathy, primarily affects the retinal ganglion cells (RGCs). While multiple groups have successfully generated RGCs from non-diseased hiPSCs, producing RGCs from glaucomatous human samples holds significant promise for understanding disease pathology by revealing patient-specific disease signatures.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland.
Tetraphenyloporphyrin derivatives are a useful scaffold for developing new pharmaceuticals for photodynamic therapy (PDT) and the photodiagnosis (PD) of cancer. We synthesized new sulfonamide fluorinated porphyrin derivatives and investigated their potential as photosensitizers and real-time bioimaging agents for cancer. We found that 5,10,15,20-tetrakis-[2',3',5',6'-tetrafluoro-4'-methanesulfamidyl)phenyl]bacteriochlorin () has intense absorption and fluorescence in the near-infrared, efficiently generates singlet oxygen and hydroxyl radicals, has low toxicity in the dark, and high phototoxicity.
View Article and Find Full Text PDFInt J Mol Sci
August 2024
Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea.
This study investigated the therapeutic effects of exosomes derived from human-induced pluripotent stem cell (hiPSC)-derived retinal organoids (ROs) on corneal epithelial wound healing. Exosomes were isolated from the culture medium of the hiPSC-derived ROs (Exo-ROs) using ultracentrifugation, and then they were characterized by a nanoparticle tracking analysis and transmission electron microscopy. In a murine model of corneal epithelial wounds, these exosomes were topically applied to evaluate their healing efficacy.
View Article and Find Full Text PDFFront Immunol
August 2024
Department of Cardiology, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Background: PaBing-II Formula (PB-II) is a traditional Chinese medicine for treating Parkinson's disease (PD). However, owing to the complexity of PB-II and the difficulty in obtaining human dopaminergic neurons (DAn), the mechanism of action of PB-II in PD treatment remains unclear. The aim of this study was to investigate the mechanisms underlying the therapeutic benefits of PB-II in patients with PD.
View Article and Find Full Text PDFStem Cell Res Ther
May 2024
Aier School of Ophthalmology, Central South University, Changsha, Hunan, China.
Background: X-linked juvenile retinoschisis (XLRS) is an inherited disease caused by RS1 gene mutation, which leads to retinal splitting and visual impairment. The mechanism of RS1-associated retinal degeneration is not fully understood. Besides, animal models of XLRS have limitations in the study of XLRS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!