The vasculature is comprised of endothelial cells that are heterogeneous in nature. From tissue resident progenitors to mature differentiated endothelial cells, the diversity of these populations allows for the formation, maintenance, and regeneration of the vascular system in development and disease, particularly during situations of wound healing. Additionally, the de-differentiation and plasticity of different endothelial cells, especially their capacity to undergo endothelial to mesenchymal transition, has also garnered significant interest due to its implication in disease progression, with emphasis on scarring and fibrosis. In this review, we will pinpoint the seminal discoveries defining the phenotype and mechanisms of endothelial heterogeneity in development and disease, with a specific focus only on wound healing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469713 | PMC |
http://dx.doi.org/10.3390/cells10092338 | DOI Listing |
Minerva Dent Oral Sci
January 2025
Department of Surgical, Medical, Molecular and Critical Area Pathology, University Hospital of Pisa, University of Pisa, Pisa, Italy.
Background: Understanding healing of the alveolar process is crucial for immediate implant, alveolar ridge preservation and guided bone regeneration procedures, and to evaluate it several different scales have been proposed; however, all have different characteristics and seem to miss a standardization allowing for an objective and dichotomous evaluation of the different aspects of wound healing. The objective of the present study is to propose and apply, in real clinical scenarios, a novel index for the objective evaluation of wound healing following erupted tooth extraction.
Methods: Healthy patients in need of a single tooth extraction were enrolled and re-examined at 7, 14 and 21 days after the extraction using the novel index proposed.
J Mater Chem B
January 2025
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, P. R. China.
Wound healing is a complex and dynamic biological process that requires meticulous management to ensure optimal outcomes. Traditional wound dressings, such as gauze and bandages, although commonly used, often fall short in their frequent need for replacement, lack of real-time monitoring and absence of anti-inflammatory and antibacterial properties, which can lead to increased risk of infection and delayed healing. Here, we address these limitations by introducing an innovative hydrogel dressing, named PHDNN6, to combine wireless Bluetooth temperature monitoring and light-triggered nitric oxide (NO) release to enhance wound healing and management.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China.
Uncontrolled bleeding and infection following trauma continue to pose significant clinical challenges. This study employs hemoadhican (HD) polysaccharide, known for its superior hemostatic properties, as the foundational material to synthesize antibacterial carbon dots (H-CDs) through a hydrothermal method at various temperatures. The H-CDs exhibiting optimal antimicrobial properties were identified via in vitro antimicrobial characterization.
View Article and Find Full Text PDFMater Today Bio
April 2025
Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China.
Purpose: infection is the most common pathogen in burn wound infections, causing delayed wound healing and progression to chronic wounds. Therefore, there is an urgent need to develop antimicrobial agents that can promote wound healing for effectively treating infected wounds.
Patients And Methods: Using magnetic stirring and ultrasound to synthesize Apt-pM@UCNPmSiO-Cur-CAZ.
Front Med (Lausanne)
January 2025
Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, United States.
Dry eye disease (DED) is one of the most commonly diagnosed eye disorders, with a prevalence ranging from 5 to 50%, depending on the geographic location. DED is a multifactorial disorder of the tears and ocular surface, which results in symptoms of discomfort, visual disturbance, and tear film instability with potential damage to the ocular surface. It is also accompanied by increased osmolarity of the tear film and inflammation of the surface of the eye.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!