AMPA receptors (AMPARs) are ionotropic glutamate receptors that play a major role in excitatory neurotransmission. AMPARs are located at both presynaptic and postsynaptic plasma membranes. A huge number of studies investigated the role of postsynaptic AMPARs in the normal and abnormal functioning of the mammalian central nervous system (CNS). These studies highlighted that changes in the functional properties or abundance of postsynaptic AMPARs are major mechanisms underlying synaptic plasticity phenomena, providing molecular explanations for the processes of learning and memory. Conversely, the role of AMPARs at presynaptic terminals is as yet poorly clarified. Accruing evidence demonstrates that presynaptic AMPARs can modulate the release of various neurotransmitters. Recent studies also suggest that presynaptic AMPARs may possess double ionotropic-metabotropic features and that they are involved in the local regulation of actin dynamics in both dendritic and axonal compartments. In addition, evidence suggests a key role of presynaptic AMPARs in axonal pathology, in regulation of pain transmission and in the physiology of the auditory system. Thus, it appears that presynaptic AMPARs play an important modulatory role in nerve terminal activity, making them attractive as novel pharmacological targets for a variety of pathological conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8470629PMC
http://dx.doi.org/10.3390/cells10092260DOI Listing

Publication Analysis

Top Keywords

presynaptic ampars
16
ampars
9
ampa receptors
8
postsynaptic ampars
8
presynaptic
7
role
5
presynaptic ampa
4
receptors health
4
health disease
4
disease ampa
4

Similar Publications

Optical imaging access to nanometer-level protein distributions in intact tissue is a highly sought-after goal, as it would provide visualization in physiologically relevant contexts. Under the unfavorable signal-to-background conditions of increased absorption and scattering of the excitation and fluorescence light in the complex tissue sample, superresolution fluorescence microscopy methods are severely challenged in attaining precise localization of molecules. We reasoned that the typical use of a confocal detection pinhole in MINFLUX nanoscopy, suppressing background and providing optical sectioning, should facilitate the detection and resolution of single fluorophores even amid scattering and optically challenging tissue environments.

View Article and Find Full Text PDF

Activity-dependent synaptic accumulation of AMPA receptors (AMPARs) and subsequent long-term synaptic strengthening underlie different forms of learning and memory. The AMPAR subunit GluA1 amino-terminal domain is essential for synaptic docking of AMPAR during LTP, but the precise mechanisms involved are not fully understood. Using unbiased proteomics, we identified the epilepsy and intellectual disability-associated VGCC auxiliary subunit α2δ1 as a candidate extracellular AMPAR slot.

View Article and Find Full Text PDF

Subchronic cyanuric acid treatment impairs spatial flexible behavior in female adolescent rats through depressing GluN2B-dependent neuronal and synaptic function.

Ecotoxicol Environ Saf

January 2025

Department of Pediatrics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China; Department of Chinese Medicine, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China; Graduate School of Guangzhou University of Chinese Medicine; Guangzhou 510006, China; Department of Proctology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China. Electronic address:

Subchronic exposure to cyanuric acid (CA) and its structural analogue melamine induces long-term effects on brain and behavior in male rodents. To examine if this exposure induced negative effects on cognitive function in females, we examined the behavioral performance and further attempted to investigate synaptic and neuronal function. CA was intraperitoneal treated with 20 or 40 mg/kg/day to adolescent female rats for 4 consecutive weeks.

View Article and Find Full Text PDF
Article Synopsis
  • The SHANK3 gene is linked to autism spectrum disorder (ASD) and is disrupted in Phelan-McDermid syndrome (PMS), which can worsen ASD symptoms; the study explores how Shank3 affects behavioral and cerebellar function in mice.
  • Researchers examined various behavioral changes in Shank3 knockout mice at juvenile and adult stages, finding that deletion of Shank3 leads to motor deficits, increased anxiety, and repetitive behaviors, with effects becoming more severe in adults.
  • Immunostaining and electrophysiology revealed Shank3 expression in cerebellar granule cells and a connection between behavioral deterioration and changes in synaptic activity, suggesting that age exacerbates behavioral issues due to alterations in cerebellar
View Article and Find Full Text PDF

Most synapses in the brain transmit information by the presynaptic release of vesicular glutamate, driving postsynaptic depolarization through AMPA-type glutamate receptors (AMPARs). The nanometer-scale topography of synaptic AMPARs regulates response amplitude by controlling the number of receptors activated by synaptic vesicle fusion. The mechanisms controlling AMPAR topography and their interactions with postsynaptic scaffolding proteins are unclear, as is the spatial relationship between AMPARs and synaptic vesicles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!