Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of this study was to fabricate a reactive oxygen species (ROS)-sensitive and folate-receptor-targeted nanophotosensitizer for the efficient photodynamic therapy (PDT) of cervical carcinoma cells. Chlorin e6 (Ce6) as a model photosensitizer was conjugated with succinyl β-cyclodextrin via selenocystamine linkages. Folic acid (FA)-poly(ethylene glycol) (PEG) (FA-PEG) conjugates were attached to these conjugates and then FA-PEG-succinyl β-cyclodextrin-selenocystamine-Ce6 (FAPEGbCDseseCe6) conjugates were synthesized. Nanophotosensitizers of FaPEGbCDseseCe6 conjugates were fabricated using dialysis membrane. Nanophotosensitizers showed spherical shapes with small particle sizes. They were disintegrated in the presence of hydrogen peroxide (HO) and particle size distribution changed from monomodal distribution pattern to multimodal pattern. The fluorescence intensity and Ce6 release rate also increased due to the increase in HO concentration, indicating that the nanophotosensitizers displayed ROS sensitivity. The Ce6 uptake ratio, ROS generation and cell cytotoxicity of the nanophotosensitizers were significantly higher than those of the Ce6 itself against HeLa cells in vitro. Furthermore, the nanophotosensitizers showed folate-receptor-specific delivery capacity and phototoxicity. The intracellular delivery of nanophotosensitizers was inhibited by folate receptor blocking, indicating that they have folate-receptor specificity in vitro and in vivo. Nanophotosensitizers showed higher efficiency in inhibition of tumor growth of HeLa cells in vivo compared to Ce6 alone. These results show that nanophotosensitizers of FaPEGbCDseseCe6 conjugates are promising candidates as PDT of cervical cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8465130 | PMC |
http://dx.doi.org/10.3390/cells10092190 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!