Agricultural weeds pose great challenges to sustainable crop production, owing to their complex origins and abundant genetic diversity. Weedy rice (WD) infests rice fields worldwide causing tremendous losses of rice yield/quality. To explore WD origins and evolution, we analyzed DNA sequence polymorphisms of the seed shattering genes ( and ) in weedy, wild, and cultivated rice from a worldwide distribution. We also used microsatellite and insertion/deletion molecular fingerprinting to determine their genetic relationship and structure. Results indicate multiple origins of WD with most samples having evolved from their cultivated progenitors and a few samples from wild rice. WD that evolved from de-domestication showed distinct genetic structures associated with and rice differentiation. In addition, the weed-unique haplotypes that were only identified in the WD samples suggest their novel mutations. Findings in this study demonstrate the key role of de-domestication in WD origins, in which and cultivars stimulated further evolution and divergence of WD in various agroecosystems. Furthermore, novel mutations promote continued evolution and genetic diversity of WD adapting to different environments. Knowledge generated from this study provides deep insights into the origin and evolution of conspecific weeds, in addition to the design of effective measures to control these weeds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472751 | PMC |
http://dx.doi.org/10.3390/biology10090828 | DOI Listing |
Front Plant Sci
December 2024
Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China.
In order to improve both resistance to lepidopteran pests and resistance to the herbicide imazethapyr in mainstay varieties of the Huang-Huai rice region, Sanming dominant genic male sterile (S-DGMS) rice was used as a platform to facilitate the pyramiding of functional genes and the replacement of the genomic background. Twelve novel lines were developed, each carrying a crystal toxin gene conferring resistance to lepidopteran pests and the allele conferring resistance to herbicide imazethapyr in the background of a mainstay variety. The genomic background of the 12 novel lines was examined using 48 specified molecular markers, and each line carried less than two polymorphic markers relative to the corresponding mainstay variety.
View Article and Find Full Text PDFSci Rep
December 2024
College of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China.
To explore the internal factors related to the strong growth and competitive ability of weedy rice during the seedling period, we collected two biotypes of Japonica weedy rice from Northeast China, four biotypes of Indica weedy rice from Eastern China and Southern China, and two biotypes of cultivated rice, Zhendao-8 (ZD-8) and Shanyou-63 (SY-63), which were used as controls in a pot experiment. Under homogeneous garden planting conditions, we measured the vascular bundle size (VBS), vascular bundle number (VBN), leaf thickness (LT), air cavity size (ACS), stomatal size (SS), stomatal density (SD), net photosynthetic rate (Pn) and stomatal conductance (Gs) of the weedy and cultivated rice biotypes. A comprehensive analysis was performed to explore the correlation between the seedling leaf structure and the photosynthetic indices of the biotypes.
View Article and Find Full Text PDFMol Ecol
December 2024
Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA.
-cinnamoyltyramine (NTCT) has been identified from an allelopathic Vietnamese rice accession OM 5930. This study employed bioassays to analyze NTCT's effects on shoot and root growth of multiple test and weed species. NTCT demonstrated potent inhibitory effects on cress, lettuce, canola, palmer amaranth, timothy, barnyardgrass, red sprangletop, and weedy rice, with increasing concentrations leading to substantial reductions in growth in all species.
View Article and Find Full Text PDFBiology (Basel)
September 2024
Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Songhu Road 2005, Shanghai 200438, China.
Lignin is a key metabolite for terrestrial plants. Two types of aromatic amino acids, phenylalanine (Phe) and tyrosine (Tyr), serve as the precursors for lignin biosynthesis. In most plant species, Phe is deaminated by Phe ammonia-lyase (PAL) to initiate lignin biosynthesis, but in grass species, Phe and Tyr are deaminated by Phe/Tyr ammonia-lyase (PTAL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!