Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Deep significance clustering (DICE) is a self-supervised learning framework. DICE identifies clinically similar and risk-stratified subgroups that neither unsupervised clustering algorithms nor supervised risk prediction algorithms alone are guaranteed to generate.
Materials And Methods: Enabled by an optimization process that enforces statistical significance between the outcome and subgroup membership, DICE jointly trains 3 components, representation learning, clustering, and outcome prediction while providing interpretability to the deep representations. DICE also allows unseen patients to be predicted into trained subgroups for population-level risk stratification. We evaluated DICE using electronic health record datasets derived from 2 urban hospitals. Outcomes and patient cohorts used include discharge disposition to home among heart failure (HF) patients and acute kidney injury among COVID-19 (Cov-AKI) patients, respectively.
Results: Compared to baseline approaches including principal component analysis, DICE demonstrated superior performance in the cluster purity metrics: Silhouette score (0.48 for HF, 0.51 for Cov-AKI), Calinski-Harabasz index (212 for HF, 254 for Cov-AKI), and Davies-Bouldin index (0.86 for HF, 0.66 for Cov-AKI), and prediction metric: area under the Receiver operating characteristic (ROC) curve (0.83 for HF, 0.78 for Cov-AKI). Clinical evaluation of DICE-generated subgroups revealed more meaningful distributions of member characteristics across subgroups, and higher risk ratios between subgroups. Furthermore, DICE-generated subgroup membership alone was moderately predictive of outcomes.
Discussion: DICE addresses a gap in current machine learning approaches where predicted risk may not lead directly to actionable clinical steps.
Conclusion: DICE demonstrated the potential to apply in heterogeneous populations, where having the same quantitative risk does not equate with having a similar clinical profile.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8500061 | PMC |
http://dx.doi.org/10.1093/jamia/ocab203 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!