A simple mechanochemical (MC) method is used to treat petroleum-contaminated soil and prepare a heavy metal adsorbent in one step. XRD, Raman, FT-IR, VSM, BET, and XPS were used to characterize the adsorbent. After MC treatment, the dissolved total petroleum hydrocarbons of the adsorbent is less than 1 mg·L, and a porous structure and carbonization phenomenon are evident. The specific surface area and cumulative void volume increase, and the adsorption pore size decreases. On the surface of soil, the percentages of iron oxides, carbonates, CO, -C-O-H, -COOH, and π unsaturated bonds increase. The Langmuir model shows that the maximum adsorption capacity of Pb, Cu, Cd, and Zn are 338.58, 51.61, 32.34, and 25.05 mg·g, respectively. The pseudo-second-order kinetic model fits the Pb adsorption process, indicating the domination of chemical adsorption. GC-MS shows that petroleum hydrocarbons are completely degraded. The Tessier continuous extraction result shows that heavy metals are bound to carbonate, iron manganese oxide, and organic matter. The MC treatment achieves deep cleanup and resource utilization of petroleum-contaminated soil through the formation of amorphous carbon, carbonates, and iron oxides on the surface of soil particles. The material is magnetic and can be recycled when used in wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.127305 | DOI Listing |
Huan Jing Ke Xue
January 2025
The Fourth Geological Brigade of Hebei Geological and Mineral Exploration and Development Bureau, Chengde 067000, China.
To efficiently remediate oil-contaminated soil, the degradation characteristics of petroleum hydrocarbons were explored using composite petroleum-degrading flora. The results showed that the degradation rates of the J0, H, HN, HK, and HKN groups were 9.82%, 33.
View Article and Find Full Text PDFSci Total Environ
December 2024
State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
Autochthonous fungal bioaugmentation (AFB) is a promising strategy for the microbial remediation of petroleum hydrocarbon (PH)-contaminated soils. However, the mechanisms underlying AFB, particularly for degrading recalcitrant PH components, are not fully understood. This study employed stable isotope probing (SIP) and high-throughput sequencing to investigate the AFB mechanisms of two hydrocarbon-degrading fungi, Fusarium solani LJD-11 and Aspergillus fumigatus LJD-29, focusing on three challenging PH components: n-Hexadecane (n-Hex), Benzo[a]pyrene (BaP), and Dibenzothiophene (DBT).
View Article and Find Full Text PDFHeliyon
December 2024
Department of Civil Safety, Lviv Polytechnic National University, 12 S. Bandery St., 79013, Lviv, Ukraine.
phytoremediation of soil contaminated with petroleum was assessed in this study. A method of soil sample preparation for determining the total content of petroleum products by infrared spectrophotometry has been developed. It is a one-stage extraction method with minimal use of carbon tetrachloride as an extractant.
View Article and Find Full Text PDFMicroorganisms
November 2024
College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102206, China.
This study selected 27 soil samples from four representative horizontally distributed onshore oilfields in China to explore the diversity of soil microbial communities and their carbon fixation capacity, with a focus on the potential interaction between pollution and carbon fixation under oil pollution stress. The analysis of the soil physicochemical properties and microbial community structures from these oilfield samples confirmed a clear biogeographic isolation effect, indicating spatial heterogeneity in the microbial communities. Additionally, the key factors influencing microbial community composition differed across regions.
View Article and Find Full Text PDFBioresour Technol
November 2024
Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an 710055, China.
Biochar is widely used in agricultural soils, but its effects with nitrogen and phosphorus amendments on petroleum-contaminated soil are unclear. This study investigated biochar-assisted biostimulation in a microcosm experiment, focusing on hydrocarbon degradation, nitrogen cycling, and soil properties. Compared to the biostimulation alone (BS), biochar combined biostimulation (BSC) significantly enhanced the abundances of petroleum hydrocarbon degraders including Lysobacter and Brevundimonas, which led to a 17% increase in total petroleum hydrocarbon (TPH) degradation, with 9% and 39% enhancements in saturated hydrocarbon degradation and aromatic hydrocarbon fraction degradation, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!