Behavior of micro pillar array column in high pressure gas chromatography.

J Chromatogr A

Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France. Electronic address:

Published: October 2021

Micro pillar array column with interpillar distance of 2.5 µm for pillars diameter of 5 µm has been introduced in high pressure gas chromatographic systems for online industrial analysis. Separation of gas mixtures have been performed under carrier gas pressure as high as 60 bar using rotating valve for gas injection without sample decompression stage prior to injection. A very low intrinsic height equivalent to a theoretical plate value of 14 µm has been obtained in few seconds. Instead of conventional gas chromatography, carrier gas nature such as helium, argon and carbon dioxide and pressure can be used to tune the selectivity. Liquid hydrocarbon samples have been successfully introduced in the column using a septum based split/splitless injector modified to work up to 40 bar. Separations of VOCs and gasoline samples have been successfully performed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2021.462551DOI Listing

Publication Analysis

Top Keywords

micro pillar
8
pillar array
8
array column
8
high pressure
8
pressure gas
8
gas chromatography
8
carrier gas
8
gas
7
behavior micro
4
column high
4

Similar Publications

Optimizing oil-water separation using fractal surfaces.

J Chem Phys

January 2025

Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil.

Oil has become a prevalent global pollutant, stimulating the research to improve the techniques to separate oil from water. Materials with special wetting properties-primarily those that repel water while attracting oil-have been proposed as suitable candidates for this task. However, one limitation in developing efficient substrates is the limited available volume for oil absorption.

View Article and Find Full Text PDF

The role of fluid friction in streamer formation and biofilm growth.

NPJ Biofilms Microbiomes

January 2025

FLOW, Department of Engineering Mechanics, KTH, Stockholm, Sweden.

Biofilms constitute one of the most common forms of living matter, playing an increasingly important role in technology, health, and ecology. While it is well established that biofilm growth and morphology are highly dependent on the external flow environment, the precise role of fluid friction has remained elusive. We grew Bacillus subtilis biofilms on flat surfaces of a channel in a laminar flow at wall shear stresses spanning one order of magnitude (τ = 0.

View Article and Find Full Text PDF

Micro/nanoscale 3D bioelectrodes gain increasing interest for electrophysiological recording of electroactive cells. Although 3D printing has shown promise to flexibly fabricate 3D bioelectronics compared with conventional microfabrication, relatively-low resolution limits the printed bioelectrode for high-quality signal monitoring. Here, a novel multi-material electrohydrodynamic printing (EHDP) strategy is proposed to fabricate bioelectronics with sub-microscale 3D gold pillars for in vitro electrophysiological recordings.

View Article and Find Full Text PDF

The Role of Re-Entrant Microstructures in Modulating Droplet Evaporation Modes.

Micromachines (Basel)

December 2024

Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, Brisbane, QLD 4111, Australia.

The evaporation dynamics of sessile droplets on re-entrant microstructures are critical for applications in microfluidics, thermal management, and self-cleaning surfaces. Re-entrant structures, such as mushroom-like shapes with overhanging features, trap air beneath droplets to enhance non-wettability. The present study examines the evaporation of a water droplet on silicon carbide (SiC) and silicon dioxide (SiO) re-entrant structures, focusing on the effects of material composition and solid area fraction on volume reduction, contact angle, and evaporation modes.

View Article and Find Full Text PDF

Effect of Photolithographic Biomimetic Surface Microstructure on Wettability and Droplet Evaporation Process.

Biomimetics (Basel)

November 2024

Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK.

In nature, engineering technology and daily life, wetting phenomena are widespread and have essential roles and significance. Bionics is becoming increasingly important nowadays and exploring the mechanism that influences biomimetic surface microstructure on droplet wetting process and heat and mass transfer characteristics is becoming more meaningful. In this paper, based on photolithography technology, SU-8 photoresist was used as raw material to prepare biomimetic surfaces with microstructures in various arrangements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!